Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 856076, 2 pages
http://dx.doi.org/10.1155/2014/856076
Editorial

PLP-Dependent Enzymes

1Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, 00185 Roma, Italy
2Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
3Section of Biological Chemistry, Department of Life Sciences and Reproduction, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy

Received 10 December 2013; Accepted 10 December 2013; Published 15 January 2014

Copyright © 2014 Alessandro Paiardini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Eliot and J. F. Kirsch, “Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations,” Annual Review of Biochemistry, vol. 73, pp. 383–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Sarup, O. M. Larsson, and A. Schousboe, “GABA transporters and GABA-transaminase as drug targets,” Current Drug Targets: CNS & Neurological Disorders, vol. 2, no. 4, pp. 269–277, 2003. View at Google Scholar · View at Scopus
  3. F. Daidone, R. Florio, S. Rinaldo et al., “In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed,” European Journal of Medicinal Chemistry, vol. 46, no. 5, pp. 1616–1621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Daidone, R. Montioli, A. Paiardini et al., “Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors,” PLoS ONE, vol. 7, no. 2, Article ID e31610, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Oppici, K. Fodor, A. Paiardini et al., “Crystal structure of the S187F variant of human liver alanine:aminotransferase associated with primary hyperoxaluria type I and its functional implications,” Proteins, vol. 81, no. 8, pp. 1457–1465, 2013. View at Publisher · View at Google Scholar
  6. E. Oppici, A. Roncador, R. Montioli, S. Bianconi, and B. Cellini, “Gly161 mutations associated with primary hyperoxaluria type I induce the cytosolic aggregation and the intracellular degradation of the apo-form of alanine:glyoxylate aminotransferase,” Biochimica et Biophysica Acta, vol. 1832, no. 12, pp. 2277–2288, 2013. View at Publisher · View at Google Scholar
  7. G. Fenalti and A. M. Buckle, “Structural biology of the GAD autoantigen,” Autoimmunity Reviews, vol. 9, no. 3, pp. 148–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Paiardini and S. Pascarella, “Structural mimicry between SLA/LP and Rickettsia surface antigens as a driver of autoimmune hepatitis: insights from an in silico study,” Theoretical Biology and Medical Modelling, vol. 10, article 25, 2013. View at Publisher · View at Google Scholar