Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 902842, 13 pages
http://dx.doi.org/10.1155/2014/902842
Research Article

Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

1Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
3Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
4Internal Medicine, Division of Endocrinology and Stark Diabetes Center, The University of Texas Medical Branch, Galveston, TX, USA
5Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA

Received 15 June 2014; Accepted 13 July 2014; Published 5 August 2014

Academic Editor: Mohamed Al-Shabrawey

Copyright © 2014 Rong Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Zhao, S. Banerjee, N. Dey et al., “Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation,” Diabetes, vol. 60, no. 7, pp. 1907–1916, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Zhang, H. Liu, M. Rojas, R. W. Caldwell, and R. B. Caldwell, “Anti-inflammatory therapy for diabetic retinopathy,” Immunotherapy, vol. 3, no. 5, pp. 609–628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Elms, H. A. Toque, M. Rojas, Z. Xu, R. W. Caldwell, and R. B. Caldwell, “The role of arginase I in diabetes-induced retinal vascular dysfunction in mouse and rat models of diabetes,” Diabetologia, vol. 56, no. 3, pp. 654–662, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Mortuza, S. Chen, B. Feng, S. Sen, and S. Chakrabarti, “High Glucose Induced Alteration of SIRTs in Endothelial Cells Causes Rapid Aging in a p300 and FOXO Regulated Pathway,” PLoS ONE, vol. 8, no. 1, Article ID e54514, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Erusalimsky and C. Skene, “Mechanisms of endothelial senescence,” Experimental Physiology, vol. 94, no. 3, pp. 299–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. W. Greider, “Telomeres and senescence: the history, the experiment, the future,” Current Biology, vol. 8, no. 5, pp. R178–R181, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Goligorsky, J. Chen, and S. Patschan, “Stress-induced premature senescence of endothelial cells: a perilous state between recovery and point of no return,” Current Opinion in Hematology, vol. 16, no. 3, pp. 215–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. V. Brodsky, O. Gealekman, J. Chen et al., “Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen,” Circulation Research, vol. 94, no. 3, pp. 377–384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Minamino and I. Komuro, “Vascular cell senescence: contribution to atherosclerosis,” Circulation Research, vol. 100, no. 1, pp. 15–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. E. Foreman and J. Tang, “Molecular mechanisms of replicative senescence in endothelial cells,” Experimental Gerontology, vol. 38, no. 11-12, pp. 1251–1257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Ota, M. Eto, M. R. Kano et al., “Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 9, pp. 1634–1639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. C. Cave, A. C. Brewer, A. Narayanapanicker et al., “NADPH oxidases in cardiovascular health and disease,” Antioxidants and Redox Signaling, vol. 8, no. 5-6, pp. 691–728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ushio-Fukai, “Redox signaling in angiogenesis: Role of NADPH oxidase,” Cardiovascular Research, vol. 71, no. 2, pp. 226–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Al-Shabrawey, M. Bartoli, A. B. El-Remessy et al., “Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 49, no. 7, pp. 3231–3238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Al-Shabrawey, M. Rojas, T. Sanders et al., “Role of NADPH oxidase in retinal vascular inflammation,” Investigative Ophthalmology and Visual Science, vol. 49, no. 7, pp. 3239–3244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Rojas, W. Zhang, Z. Xu et al., “Requirement of NOX2 expression in both retina and bone marrow for diabetes-induced retinal vascular injury,” PLoS ONE, vol. 8, no. 12, Article ID e84357, 2013. View at Publisher · View at Google Scholar
  17. Y. Du, A. Veenstra, K. Palczewski, and T. S. Kern, “Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 16586–16591, 2013. View at Google Scholar
  18. M. Al-Shabrawey, M. Bartoli, A. B. El-Remessy et al., “Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy,” American Journal of Pathology, vol. 167, no. 2, pp. 599–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Madsen-Bouterse and R. A. Kowluru, “Oxidative stress and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives,” Reviews in Endocrine and Metabolic Disorders, vol. 9, no. 4, pp. 315–327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Ungvari, G. Kaley, R. de Cabo, W. E. Sonntag, and A. Csiszar, “Mechanisms of vascular aging: new perspectives,” Journals of Gerontology A Biological Sciences and Medical Sciences, vol. 65, no. 10, pp. 1028–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Mostoslavsky, K. F. Chua, D. B. Lombard et al., “Genomic instability and aging-like phenotype in the absence of mammalian SIRT6,” Cell, vol. 124, no. 2, pp. 315–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. B. Lombard, B. Schwer, F. W. Alt, and R. Mostoslavsky, “SIRT6 in DNA repair, metabolism and ageing,” Journal of Internal Medicine, vol. 263, no. 2, pp. 128–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. L. Kawahara, E. Michishita, A. S. Adler et al., “SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span,” Cell, vol. 136, no. 1, pp. 62–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Zhong, A. D'Urso, D. Toiber et al., “The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α,” Cell, vol. 140, no. 2, pp. 280–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. R. Sundaresan, P. Vasudevan, L. Zhong et al., “The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun,” Nature Medicine, vol. 18, no. 11, pp. 1643–1650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Xiao, R. Wang, T. J. Lahusen et al., “Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice,” The Journal of Biological Chemistry, vol. 287, no. 50, pp. 41903–41913, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Ameri, H. Liu, R. Liu et al., “TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization,” Investigative Ophthalmology & Visual Science, vol. 55, no. 2, pp. 801–813, 2014. View at Google Scholar
  28. M. Byun, K. Jeon, J. Choi, J. Shim, and D. Jue, “Dual effect of oxidative stress on NF-κB activation in HeLa cells,” Experimental and Molecular Medicine, vol. 34, no. 5, pp. 332–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Fatokun, T. W. Stone, and R. A. Smith, “Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: the effects of glutamate and protection by purines,” Bone, vol. 39, no. 3, pp. 542–551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Á. Gutiérrez-Uzquiza, M. Arechederra, P. Bragado, J. A. Aguirre-Ghiso, and A. Porras, “p38α mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70S6K pathway,” The Journal of Biological Chemistry, vol. 287, no. 4, pp. 2632–2642, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Ota, M. Akishita, M. Eto, K. Iijima, M. Kaneki, and Y. Ouchi, “Sirt1 modulates premature senescence-like phenotype in human endothelial cells,” Journal of Molecular and Cellular Cardiology, vol. 43, no. 5, pp. 571–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Takahashi, N. Ohtani, and E. Hara, “Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control,” Cell Division, vol. 2, article 10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Lappas, “Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells,” Mediators of Inflammation, vol. 2012, Article ID 597514, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Cardus, A. K. Uryga, G. Walters, and J. D. Erusalimsky, “SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence,” Cardiovascular Research, vol. 97, no. 3, pp. 571–579, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Michishita, R. A. McCord, E. Berber et al., “SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin,” Nature, vol. 452, no. 7186, pp. 492–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Natoli, “When Sirtuins and NF-κB Collide,” Cell, vol. 136, no. 1, pp. 19–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Ben-Porath and R. A. Weinberg, “The signals and pathways activating cellular senescence,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 5, pp. 961–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Mao, C. Hine, X. Tian et al., “SIRT6 promotes DNA repair under stress by activating PARP1,” Science, vol. 332, no. 6036, pp. 1443–1446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Ronnebaum, Y. Wu, H. McDonough, and C. Patterson, “The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination,” Molecular and Cellular Biology, vol. 33, pp. 4461–4472, 2013. View at Google Scholar
  40. J. S. Lee, T. W. Seo, J. H. Yi, K. S. Shin, and S. J. Yoo, “CHIP has a protective role against oxidative stress-induced cell death through specific regulation of Endonuclease G,” Cell Death and Disease, vol. 4, no. 6, article e666, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Salminen, K. Kaarniranta, and A. Kauppinen, “Crosstalk between oxidative stress and SIRT1: impact on the aging process,” International Journal of Molecular Sciences, vol. 14, no. 2, pp. 3834–3859, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Sebastián, B. M. M. Zwaans, D. M. Silberman et al., “The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism,” Cell, vol. 151, no. 6, pp. 1185–1199, 2012. View at Publisher · View at Google Scholar · View at Scopus