Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 925101, 12 pages
http://dx.doi.org/10.1155/2014/925101
Review Article

Amyotrophic Lateral Sclerosis: A Focus on Disease Progression

1LAGENBIO-I3A, Veterinary Faculty of Zaragoza, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
2Laboratory of Neurobiology of Degenerative Diseases of the Nervous System, Biosciences Department, Federal University of Sergipe, Avenida Vereador Olimpio Grande, s/n, Centro, 49500-000 Itabaiana, SE, Brazil

Received 22 February 2014; Accepted 28 April 2014; Published 3 August 2014

Academic Editor: Pierre-François Pradat

Copyright © 2014 Ana C. Calvo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. R. Brooks, R. G. Miller, M. Swash, and T. L. Munsat, “El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 1, no. 5, pp. 293–299, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Lomen-Hoerth, J. Murphy, S. Langmore, J. H. Kramer, R. K. Olney, and B. Miller, “Are amyotrophic lateral sclerosis patients cognitively normal?” Neurology, vol. 60, no. 7, pp. 1094–1097, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Rusina, P. Ridzon, P. Kulist'ák et al., “Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome. A prospective study,” European Journal of Neurology, vol. 17, no. 1, pp. 23–30, 2010. View at Publisher · View at Google Scholar
  4. G. M. Ringholz, S. H. Appel, M. Bradshaw, N. A. Cooke, D. M. Mosnik, and P. E. Schulz, “Prevalence and patterns of cognitive impairment in sporadic ALS,” Neurology, vol. 65, no. 4, pp. 586–590, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. Hays, A. Roxas, S. A. Sadia et al., “A monoclonal IgA in patient with amyotrophic lateral sclerosis reacts with neurofilaments and surface antigen on neuroblastoma cells,” Journal of Neuropathology and Experimental Neurology, vol. 49, no. 4, pp. 383–398, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. L. C. Wijesekera and P. N. Leigh, “Amyotrophic lateral sclerosis,” Orphanet Journal of Rare Diseases, vol. 4, no. 1, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Katsuno, F. Tanaka, and G. Sobue, “Perspectives on molecular targeted therapies and clinical trials for neurodegenerative diseases,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 83, no. 3, pp. 329–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Jones, I. Woollacott, A. Shatunov et al., “Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat,” Neurobiology of Aging, vol. 34, no. 9, pp. 2234.e1–2234.e7, 2013. View at Publisher · View at Google Scholar
  9. A. Chiò, S. Battistini, A. Calvo et al., “Genetic counselling in ALS: facts, uncertainties and clinical suggestions,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 85, no. 5, pp. 478–485, 2014. View at Publisher · View at Google Scholar
  10. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Pasinelli and R. H. Brown, “Molecular biology of amyotrophic lateral sclerosis: Insights from genetics,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 710–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. X. W. Su, J. R. Broach, J. R. Connor et al., “Genetic heterogeneity of ALS: implications for clinical practice and research,” Muscle & Nerve, vol. 49, no. 6, pp. 786–803, 2014. View at Publisher · View at Google Scholar
  13. S. Cluskey and D. B. Ramsden, “Mechanisms of neurodegeneration in amyotrophic lateral sclerosis,” Molecular Pathology, vol. 54, no. 6, pp. 386–392, 2001. View at Google Scholar · View at Scopus
  14. J. C. Schymick, K. Talbot, and B. J. Traynor, “Genetics of sporadic amyotrophic lateral sclerosis,” Human Molecular Genetics, vol. 16, no. 2, pp. R233–R242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Graber, W. F. Hickey, and B. T. Harris, “Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis,” Journal of Neuroinflammation, vol. 7, article 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Vucic and M. C. Kiernan, “Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis,” Current Molecular Medicine, vol. 9, no. 3, pp. 255–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Chancellor, J. M. Slattery, H. Fraser, R. J. Swingler, S. M. Holloway, and C. P. Warlow, “The prognosis of adult-onset motor neuron disease: a prospective study based on the Scottish motor neuron disease register,” Journal of Neurology, vol. 240, no. 6, pp. 339–346, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-M. Burgunder, L. Schöls, J. Baets et al., “EFNS guidelines for the molecular diagnosis of neurogenetic disorders: motoneuron, peripheral nerve and muscle disorders,” European Journal of Neurology, vol. 18, no. 2, pp. 207–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. A. Johnston, B. R. Stanton, M. R. Turner et al., “Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London,” Journal of Neurology, vol. 253, no. 12, pp. 1642–1643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Bowser and D. Lacomis, “Applying proteomics to the diagnosis and treatment of ALS and related diseases,” Muscle and Nerve, vol. 40, no. 5, pp. 753–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Lomen-Hoerth, “Amyotrophic lateral sclerosis from bench to bedside,” Seminars in Neurology, vol. 28, no. 2, pp. 205–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Khader and F. G. Greiner, “Neuroradiology case of the day,” Radiographics, vol. 19, no. 6, pp. 1696–1698, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. S. C. Bondy and D. K. Lee, “Oxidative stress induced by glutamate receptor agonists,” Brain Research, vol. 610, no. 2, pp. 229–233, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. F. M. Menzies, M. R. Cookson, R. W. Taylor et al., “Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis,” Brain, vol. 125, no. 7, pp. 1522–1533, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Vucic, J. Howells, L. Trevillion, and M. C. Kiernan, “Assessment of cortical excitability using threshold tracking techniques,” Muscle and Nerve, vol. 33, no. 4, pp. 477–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Vucic, G. A. Nicholson, and M. C. Kiernan, “Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis,” Brain, vol. 131, no. 6, pp. 1540–1550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. de Carvalho, R. Dengler, A. Eisen et al., “Electrodiagnostic criteria for diagnosis of ALS,” Clinical Neurophysiology, vol. 119, no. 3, pp. 497–503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. Makki and M. Benatar, “The electromyographic diagnosis of amyotrophic lateral sclerosis: does the evidence support the El Escorial criteria?” Muscle and Nerve, vol. 35, no. 5, pp. 614–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Costa, S. Swash, and M. de Carvalho, “Awaji criteria for the diagnosis of Amyotrophic Lateral Sclerosis: a systematic review,” Archives of Neurology, vol. 69, no. 11, pp. 1410–1416, 2012. View at Google Scholar
  30. A. C. Pinto, M. Alves, A. Nogueira et al., “Can amyotrophic lateral sclerosis patients with respiratory insufficiency exercise?” Journal of the Neurological Sciences, vol. 169, no. 1-2, pp. 69–75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Chiò, A. Calvo, A. Ilardi et al., “Lower serum lipid levels are related to respiratory impairment in patients with ALS,” Neurology, vol. 73, no. 20, pp. 1681–1685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Azuaje, Bioinformatics and Biomarker Discovery: “Omic” Data Analysis for Personalized Medicine, Wiley-Blackwell, West Sussex, UK, 2010.
  33. R. Balendra, A. Jones, N. Jivraj et al., “Estimating clinical stage of amyotrophic lateral sclerosis from the ALS Functional Rating Scale,” Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, vol. 15, no. 3-4, pp. 279–284, 2014. View at Publisher · View at Google Scholar
  34. A. Chiò, E. R. Hammond, G. Mora et al., “Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis,” Journal of Neurology, Neurosurgery & Psychiatry, 2013. View at Publisher · View at Google Scholar
  35. M.-M. El Mendili, J. Cohen-Adad, M. Pelegrini-Issac et al., “Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis,” PLoS ONE, vol. 9, no. 4, Article ID e95516, 2014. View at Publisher · View at Google Scholar
  36. L. Dupuis, J.-L. Gonzalez de Aguilar, F. di Scala et al., “Nogo provides a molecular marker for diagnosis of amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 10, no. 3, pp. 358–365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Fergani, L. Dupuis, N. Jokic et al., “Reticulons as markers of neurological diseases: focus on amyotrophic lateral sclerosis,” Neurodegenerative Diseases, vol. 2, no. 3-4, pp. 185–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Karnezis, W. Mandemakers, J. L. McQualter et al., “Reticulons as markers of neurological diseases: focus on amyotrophic lateral sclerosis,” Nature Neuroscience, vol. 7, no. 7, pp. 736–744, 2004. View at Google Scholar
  39. N. Jokic, J. Gonzalez De Aguilar, P. Pradat et al., “Nogo expression in muscle correlates with amyotrophic lateral sclerosis severity,” Annals of Neurology, vol. 57, no. 4, pp. 553–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Zhao, D. J. Lange, L. Ho et al., “Vgf is a novel biomarker associated with muscle weakness in amyotrophic lateral sclerosis (ALS), with a potential role in disease pathogenesis,” International Journal of Medical Sciences, vol. 5, no. 2, pp. 92–99, 2008. View at Google Scholar · View at Scopus
  41. A. F. Keller, M. Gravel, and J. Kriz, “Live imaging of amyotrophic lateral sclerosis pathogenesis: disease onset is characterized by marked induction of GFAP in schwann cells,” GLIA, vol. 57, no. 10, pp. 1130–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Zhang, S. Chen, L. Li, Q. Wang, and W. Le, “Decreased level of 5-methyltetrahydrofolate: a potential biomarker for pre-symptomatic amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 293, no. 1-2, pp. 102–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Philips, L. de Muynck, H. N. T. Thu et al., “Microglial upregulation of progranulin as a marker of motor neuron degeneration,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 12, pp. 1191–1200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. N. Gerber, J. Sabourin, M. Rabano, M. D. M. Vivanco, and F. E. Perrin, “Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis,” PLoS ONE, vol. 7, no. 4, Article ID e36000, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Almer, S. Vukosavic, N. Romero, and S. Przedborski, “Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 72, no. 6, pp. 2415–2425, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. M. C. Evans, S. Serres, and A. A. Khrapitchev, “T2-weighted MRI detects presymptomatic pathology in the SOD1 mouse model of ALS,” Journal of Cerebral Blood Flow & Metabolism, vol. 34, pp. 785–793, 2014. View at Publisher · View at Google Scholar
  47. C. Nicaise, D. Mitrecic, P. Demetter et al., “Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat,” Brain Research, vol. 1301, pp. 152–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. C. P. W. Soon, P. J. Crouch, B. J. Turner et al., “Serum matrix metalloproteinase-9 activity is dysregulated with disease progression in the mutant SOD1 transgenic mice,” Neuromuscular Disorders, vol. 20, no. 4, pp. 260–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Iłzecka, Z. Stelmasiak, and B. Dobosz, “Matrix metalloproteinase-9 (MMP-9) activity in cerebrospinal fluid of amyotrophic lateral sclerosis patients,” Neurologia i Neurochirurgia Polska, vol. 35, no. 6, pp. 1035–1043, 2001. View at Google Scholar · View at Scopus
  50. T. Shinozawa, Y. Urade, T. Maruyama, and D. Watabe, “Tetranor PGDM analyses for the amyotrophic lateral sclerosis: positive and simple diagnosis and evaluation of drug effect,” Biochemical and Biophysical Research Communications, vol. 415, no. 4, pp. 539–544, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Boylan, C. Yang, J. Crook et al., “Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker,” Journal of Neurochemistry, vol. 111, no. 5, pp. 1182–1191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. A. C. Calvo, R. Manzano, G. Atencia-Cibreiro et al., “Genetic biomarkers for ALS disease in transgenic SOD1 G93A mice,” PLoS ONE, vol. 7, no. 3, Article ID e32632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Ranganathan, E. Williams, P. Ganchev et al., “Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 95, no. 5, pp. 1461–1471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Fujita, M. Honda, R. Hayashi et al., “Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: a possible use as an indicator of extent of the motor neuron loss,” Journal of the Neurological Sciences, vol. 158, no. 1, pp. 53–57, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Obayashi, K. Sato, R. Shimazaki et al., “Salivary chromogranin A: useful and quantitative biochemical marker of affective state in patients with amyotrophic lateral sclerosis,” Internal Medicine, vol. 47, no. 21, pp. 1875–1879, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Figueroa-Romero, J. Hur, D. E. Bender et al., “Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis,” PLoS ONE, vol. 7, no. 12, Article ID e52672, 2012. View at Publisher · View at Google Scholar
  57. S. Petri, M. Kiaei, M. Damiano et al., “Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 98, no. 4, pp. 1141–1148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. H. S. Jin, I. C. Sung, R. L. Hyang et al., “Concurrent administration of Neu2000 and lithium produces marked improvement of motor neuron survival, motor function, and mortality in a mouse model of amyotrophic lateral sclerosis,” Molecular Pharmacology, vol. 71, no. 4, pp. 965–975, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Kiaei, K. Kipiani, S. Petri, J. Chen, N. Y. Calingasan, and M. F. Beal, “Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis,” Neurodegenerative Diseases, vol. 2, no. 5, pp. 246–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Petri, N. Y. Calingasan, O. A. Alsaied et al., “The lipophilic metal chelators DP-109 and DP-460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 102, no. 3, pp. 991–1000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Benkler, D. Offen, E. Melamed et al., “Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application,” The EPMA Journal, vol. 1, no. 2, pp. 343–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Bigini, M. Repici, G. Cantarella et al., “Recombinant human TNF-binding protein-1 (rhTBP-1) treatment delays both symptoms progression and motor neuron loss in the wobbler mouse,” Neurobiology of Disease, vol. 29, no. 3, pp. 465–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. Lincecum, F. G. Vieira, M. Z. Wang et al., “From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis,” Nature Genetics, vol. 42, no. 5, pp. 392–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Kiaei, S. Petri, K. Kipiani et al., “Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis,” Journal of Neuroscience, vol. 26, no. 9, pp. 2467–2473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. D. Zurn, L. Winkel, A. Menoud et al., “Combined effects of GDNF, BDNF, and CNTF on motoneuron differentiation in vitro,” Journal of Neuroscience Research, vol. 44, no. 2, pp. 133–141, 1996. View at Google Scholar
  66. T. Mennini, M. de Paola, P. Bigini et al., “Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo,” Molecular Medicine, vol. 12, no. 7-8, pp. 153–160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. E. F. Goodall and K. E. Morrison, “Amyotrophic lateral sclerosis (motor neuron disease): proposed mechanisms and pathways to treatment,” Expert Reviews in Molecular Medicine, vol. 8, no. 11, pp. 1–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Kalra, A. Genge, and D. L. Arnold, “A prospective, randomized, placebo-controlled evaluation of corticoneuronal response to intrathecal BDNF therapy in ALS using magnetic resonance spectroscopy: feasibility and results,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 4, no. 1, pp. 22–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. J. H. Weishaupt, C. Bartels, E. Pölking et al., “Reduced oxidative damage in ALS by high-dose enteral melatonin treatment,” Journal of Pineal Research, vol. 41, no. 4, pp. 313–323, 2006. View at Google Scholar
  70. C. E. Le Pichon, S. L. Dominguez, H. Solanoy et al., “EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS,” PLoS ONE, vol. 8, no. 4, Article ID e62342, 2013. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Peviani, E. Salvaneschi, L. Bontempi et al., “Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation,” Neurobiology of Disease, vol. 62, pp. 218–232, 2014. View at Publisher · View at Google Scholar
  72. A. Cifra, F. Nani, and A. Nistri, “Riluzole is a potent drug to protect neonatal rat hypoglossal motoneurons in vitro from excitotoxicity due to glutamate uptake block,” European Journal of Neuroscience, vol. 33, no. 5, pp. 899–913, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. P. H. Gordon, “Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials,” Aging and Disease, vol. 4, no. 5, pp. 295–310, 2013. View at Publisher · View at Google Scholar
  74. Y. N. Gerber, A. Privat, and F. E. Perrin, “Gacyclidine improves the survival and reduces motor deficits in a mouse model of amyotrophic lateral sclerosis,” Frontiers in Cellular Neuroscience, vol. 7, p. 280, 2013. View at Publisher · View at Google Scholar
  75. M. Azzouz, G. S. Ralph, E. Storkebaum et al., “VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model,” Nature, vol. 429, no. 6990, pp. 413–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. B. K. Kaspar, J. Lladó, N. Sherkat, J. D. Rothstein, and F. H. Gage, “Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model,” Science, vol. 301, no. 5634, pp. 839–842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Ciriza, M. Moreno-Igoa, A. C. Calvo et al., “A genetic fusion GDNF-C fragment of tetanus toxin prolongs survival in a symptomatic mouse ALS model,” Restorative Neurology and Neuroscience, vol. 26, no. 6, pp. 459–465, 2008. View at Google Scholar · View at Scopus
  78. M. Moreno-Igoa, A. C. Calvo, C. Penas et al., “Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy,” Journal of Molecular Medicine, vol. 88, no. 3, pp. 297–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Locatelli, S. Corti, D. Papadimitriou et al., “Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice,” Annals of Neurology, vol. 62, no. 1, pp. 81–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Corti, F. Locatelli, D. Papadimitriou et al., “Neural stem cells LewisX + CXCR4 + modify disease progression in an amyotrophic lateral sclerosis model,” Brain, vol. 130, no. 5, pp. 1289–1305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Suzuki, J. McHugh, C. Tork et al., “GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection muscule, in a rat model of familial ALS,” PLoS ONE, vol. 2, article e689, no. 8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Choi, Y. Lee, H. Kim, S. H. Kim, and H. Suh-Kim, “Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model,” Cell Transplantation, vol. 22, no. 5, pp. 855–870, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. J. D. Glass, N. M. Boulis, K. Johe et al., “Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients,” Stem Cells, vol. 30, no. 6, pp. 1144–1151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. E. L. Feldman, N. M. Boulis, J. Hur et al., “Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes,” Annals of Neurology, vol. 75, no. 3, pp. 363–373, 2014. View at Google Scholar