Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 245154, 28 pages
http://dx.doi.org/10.1155/2015/245154
Review Article

Poorly Understood Aspects of Striated Muscle Contraction

1Department of Chemistry Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
2Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada H3A 2T5
3Institute for Biophysical Chemistry, Medizinische Hochschule Hannover, 30625 Hannover, Germany

Received 22 August 2014; Accepted 28 October 2014

Academic Editor: Oleg S. Matusovsky

Copyright © 2015 Alf Månsson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Huxley, “Muscle structure and theories of contraction,” Progress in biophysics and biophysical chemistry, vol. 7, pp. 255–318, 1957. View at Google Scholar · View at Scopus
  2. H. E. Huxley, “The mechanism of muscular contraction,” Science, vol. 164, no. 3886, pp. 1356–1366, 1969. View at Publisher · View at Google Scholar · View at Scopus
  3. A. F. Huxley, “Muscular contraction,” The Journal of Physiology, vol. 243, no. 1, pp. 1–43, 1974. View at Google Scholar · View at Scopus
  4. R. W. Lymn and E. W. Taylor, “Mechanism of adenosine triphosphate hydrolysis by actomyosin,” Biochemistry, vol. 10, no. 25, pp. 4617–4624, 1971. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Rayment, H. M. Holden, M. Whittaker et al., “Structure of the actin-myosin complex and its implications for muscle contraction,” Science, vol. 261, no. 5117, pp. 58–65, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Geeves and K. C. Holmes, “The molecular mechanism of muscle contraction,” Advances in Protein Chemistry, vol. 71, pp. 161–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Kron and J. A. Spudich, “Fluorescent actin filaments move on myosin fixed to a glass surface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 17, pp. 6272–6276, 1986. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Y. Toyoshima, S. J. Kron, E. M. McNally, K. R. Niebling, and J. A. Spudich, “Myosin subfragment-1 is sufficient to move actin filaments in vitro,” Nature, vol. 328, no. 6130, pp. 536–539, 1987. View at Publisher · View at Google Scholar · View at Scopus
  9. P. R. H. Steinmetz, J. E. M. Kraus, C. Larroux et al., “Independent evolution of striated muscles in cnidarians and bilaterians,” Nature, vol. 487, no. 7406, pp. 231–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. P. Edman and F. W. Flitney, “Laser diffraction studies of sarcomere dynamics during ‘isometric’ relaxation in isolated muscle fibres of the frog,” Journal of Physiology, vol. 329, pp. 1–20, 1982. View at Google Scholar · View at Scopus
  11. K. A. P. Edman, “Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap?” Journal of Physiology, vol. 590, no. 6, pp. 1339–1345, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. D. E. Rassier, “Residual force enhancement in skeletal muscles: one sarcomere after the other,” Journal of Muscle Research and Cell Motility, vol. 33, no. 3-4, pp. 155–165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Batters, C. Veigel, E. Homsher, and J. R. Sellers, “To understand muscle you must take it apart,” Frontiers in Physiology, vol. 5, Article ID Article 90, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. H. E. Huxley, “A personal view of muscle and motility mechanisms,” Annual Review of Physiology, vol. 58, pp. 1–19, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Schiaffino and C. Reggiani, “Fiber types in Mammalian skeletal muscles,” Physiological Reviews, vol. 91, no. 4, pp. 1447–1531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Spudich, “The myosin swinging cross-bridge model,” Nature Reviews Molecular Cell Biology, vol. 2, no. 5, pp. 387–392, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. F. Huxley and R. Niedergerke, “Structural changes in muscle during contraction: interference microscopy of living muscle fibres,” Nature, vol. 173, no. 4412, pp. 971–973, 1954. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Huxley and J. Hanson, “Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation,” Nature, vol. 173, no. 4412, pp. 973–976, 1954. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Gordon, A. F. Huxley, and F. J. Julian, “The variation in isometric tension with sarcomere length in vertebrate muscle fibres.,” Journal of Physiology, vol. 184, no. 1, pp. 170–192, 1966. View at Google Scholar · View at Scopus
  20. J. A. Spudich, S. J. Kron, and M. P. Sheetz, “Movement of myosin-coated beads on oriented filaments reconstituted from purified actin,” Nature, vol. 315, no. 6020, pp. 584–586, 1985. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Yanagida, M. Nakase, K. Nishiyama, and F. Oosawa, “Direct observation of motion of single F-actin filaments in the presence of myosin,” Nature, vol. 307, no. 5946, pp. 58–60, 1984. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, 1987. View at Publisher · View at Google Scholar · View at Scopus
  23. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature, vol. 368, no. 6467, pp. 113–119, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Block, L. S. B. Goldsteint, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature, vol. 348, no. 6299, pp. 348–352, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature, vol. 374, no. 6522, pp. 555–559, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Kabsch, H. G. Mannherz, D. Suck, E. F. Pai, and K. C. Holmes, “Atomic structure of the actin:DNase I complex,” Nature, vol. 347, no. 6288, pp. 37–44, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Rayment, W. R. Rypniewski, K. Schmidt-Bäse et al., “Three-dimensional structure of myosin subfragment-1: a molecular motor,” Science, vol. 261, no. 5117, pp. 50–58, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. A. De Lozanne and J. A. Spudich, “Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination,” Science, vol. 236, no. 4805, pp. 1086–1091, 1987. View at Publisher · View at Google Scholar · View at Scopus
  29. E. W. Kubalek, T. Q. P. Uyeda, and J. A. Spudich, “A dictyostelium myosin II lacking a proximal 58-kDa portion of the tail is functional in vitro and in vivo,” Molecular Biology of the Cell, vol. 3, no. 12, pp. 1455–1462, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Cooke, “The mechanism of muscle contraction,” CRC Critical Reviews in Biochemistry, vol. 21, no. 1, pp. 53–118, 1986. View at Publisher · View at Google Scholar · View at Scopus
  31. K. A. P. Edman, A. Månsson, and C. Caputo, “The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function,” The Journal of Physiology, vol. 503, part 1, pp. 141–156, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Piazzesi, M. Reconditi, M. Linari et al., “Skeletal muscle performance determined by modulation of number of Myosin motors rather than motor force or stroke size,” Cell, vol. 131, no. 4, pp. 784–795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Nocella, M. A. Bagni, G. Cecchi, and B. Colombini, “Mechanism of force enhancement during stretching of skeletal muscle fibres investigated by high time-resolved stiffness measurements,” Journal of Muscle Research and Cell Motility, vol. 34, no. 1, pp. 71–81, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Piazzesi, F. Francini, M. Linari, and V. Lombardi, “Tension transients during steady lengthening of tetanized muscle fibres of the frog,” The Journal of Physiology, vol. 445, pp. 659–711, 1992. View at Google Scholar · View at Scopus
  35. E. Brunello, M. Reconditi, R. Elangovan et al., “Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 50, pp. 20114–20119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P. A. Harvey and L. A. Leinwand, “The cell biology of disease: cellular mechanisms of cardiomyopathy,” The Journal of Cell Biology, vol. 194, no. 3, pp. 355–365, 2011. View at Google Scholar
  37. J. A. Spudich, “Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases,” Biophysical Journal, vol. 106, no. 6, pp. 1236–1249, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Teekakirikul, R. F. Padera, J. G. Seidman, and C. E. Seidman, “Hypertrophic cardiomyopathy: translating cellular cross talk into therapeutics,” The Journal of Cell Biology, vol. 199, no. 3, pp. 417–421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. N. G. Laing, “Congenital myopathies,” Current Opinion in Neurology, vol. 20, no. 5, pp. 583–589, 2007. View at Google Scholar
  40. H. Tajsharghi and A. Oldfors, “Myosinopathies: pathology and mechanisms,” Acta Neuropathologica, vol. 125, no. 1, pp. 3–18, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Memo and S. Marston, “Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain-or loss-of-function,” Journal of Muscle Research and Cell Motility, vol. 34, no. 3-4, pp. 165–169, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Ochala, D. S. Gokhin, I. Pénisson-Besnier et al., “Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms,” Human Molecular Genetics, vol. 21, no. 20, Article ID dds289, pp. 4473–4485, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Månsson, “Hypothesis and theory: mechanical instabilities and non-uniformities in hereditary sarcomere myopathies,” Frontiers in Physiology, vol. 5, article 350, 2014. View at Publisher · View at Google Scholar
  44. A. M. Gordon, E. Homsher, and M. Regnier, “Regulation of contraction in striated muscle,” Physiological Reviews, vol. 80, no. 2, pp. 853–924, 2000. View at Google Scholar · View at Scopus
  45. S. S. Lehrer, “The 3-state model of muscle regulation revisited: is a fourth state involved?” Journal of Muscle Research and Cell Motility, vol. 32, no. 3, pp. 203–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. R. Sellers, Myosins, Oxford University Press, Oxford, UK, 2nd edition, 1999.
  47. A. F. Huxley and R. M. Simmons, “Proposed mechanism of force generation in striated muscle,” Nature, vol. 233, no. 5321, pp. 533–538, 1971. View at Publisher · View at Google Scholar · View at Scopus
  48. K. A. P. Edman and N. A. Curtin, “Synchronous oscillations of length and stiffness during loaded shortening of frog muscle fibres,” Journal of Physiology, vol. 534, no. 2, pp. 553–563, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. T. A. J. Duke, “Molecular model of muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2770–2775, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Eisenberg and C. Moos, “The adenosine triphosphatase activity of acto-heavy meromyosin. A kinetic analysis of actin activation,” Biochemistry, vol. 7, no. 4, pp. 1486–1489, 1968. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Eisenberg and C. Moos, “Actin activation of heavy meromyosin adenosine triphosphatase. Dependence on adenosine triphosphate and actin concentrations.,” Journal of Biological Chemistry, vol. 245, no. 9, pp. 2451–2456, 1970. View at Google Scholar · View at Scopus
  52. E. Eisenberg and L. E. Greene, “The relation of muscle biochemistry to muscle physiology.,” Annual Review of Physiology, vol. 42, pp. 293–309, 1980. View at Publisher · View at Google Scholar · View at Scopus
  53. S. P. Chock, P. B. Chock, and E. Eisenberg, “The mechanism of the skeletal muscle myosin ATPase. II. Relationship between the fluorescence enhancement induced by ATP and the initial Pi burst,” The Journal of Biological Chemistry, vol. 254, no. 9, pp. 3236–3243, 1979. View at Google Scholar · View at Scopus
  54. L. A. Stein, P. B. Chock, and E. Eisenberg, “The rate-limiting step in the actomyosin adenosinetriphosphatase cycle,” Biochemistry, vol. 23, no. 7, pp. 1555–1563, 1984. View at Publisher · View at Google Scholar · View at Scopus
  55. E. W. Taylor, “Mechanism of actomyosin ATPase and the problem of muscle contraction,” CRC Critical Reviews in Biochemistry, vol. 6, no. 2, pp. 103–164, 1979. View at Publisher · View at Google Scholar · View at Scopus
  56. Y.-Z. Ma and E. W. Taylor, “Kinetic mechanism of myofibril ATPase,” Biophysical Journal, vol. 66, no. 5, pp. 1542–1553, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. M. A. Geeves, R. S. Goody, and H. Gutfreund, “Kinetics of acto-S1 interaction as a guide to a model for the crossbridge cycle,” Journal of Muscle Research and Cell Motility, vol. 5, no. 4, pp. 351–361, 1984. View at Publisher · View at Google Scholar · View at Scopus
  58. M. A. Geeves, “The dynamics of actin and myosin association and the crossbridge model of muscle contraction,” Biochemical Journal, vol. 274, no. 1, pp. 1–14, 1991. View at Google Scholar · View at Scopus
  59. K. C. Holmes, R. R. Schröder, H. L. Sweeney, and A. Houdusse, “The structure of the rigor complex and its implications for the power stroke,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1452, pp. 1819–1828, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. H. L. Sweeney and A. Houdusse, “Structural and functional insights into the myosin motor mechanism,” Annual Review of Biophysics, vol. 39, no. 1, pp. 539–557, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Capitanio, M. Canepari, P. Cacciafesta et al., “Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 1, pp. 87–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Málnási-Csizmadia and M. Kovács, “Emerging complex pathways of the actomyosin powerstroke,” Trends in Biochemical Sciences, vol. 35, no. 12, pp. 684–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. R. Bagshaw and D. R. Trentham, “The characterization of myosin product complexes and of product release steps during the magnesium ion dependent adenosine triphosphatase reaction,” Biochemical Journal, vol. 141, no. 2, pp. 331–349, 1974. View at Google Scholar · View at Scopus
  64. S. Highsmith, “The effects of temperature and salts on myosin subfragment 1 and F actin association,” Archives of Biochemistry and Biophysics, vol. 180, no. 2, pp. 404–408, 1977. View at Publisher · View at Google Scholar · View at Scopus
  65. H. D. White, B. Belknap, and M. R. Webb, “Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate,” Biochemistry, vol. 36, no. 39, pp. 11828–11836, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Irving, T. St Clair-Allen, C. Sabido-David et al., “Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle,” Nature, vol. 375, no. 6533, pp. 688–691, 1995. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Kaya and H. Higuchi, “Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments,” Science, vol. 329, no. 5992, pp. 686–689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White, “Movement and force produced by a single myosin head,” Nature, vol. 378, no. 6553, pp. 209–212, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Brenner, M. Schoenberg, J. M. Chalovich, L. E. Greene, and E. Eisenberg, “Evidence for cross-bridge attachment in relaxed muscle at low ionic strength.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 23, pp. 7288–7291, 1982. View at Publisher · View at Google Scholar · View at Scopus
  70. M. A. Geeves and K. C. Holmes, “Structural mechanism of muscle contraction,” Annual Review of Biochemistry, vol. 68, pp. 687–728, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. K. A. Taylor, H. Schmitz, M. C. Reedy et al., “Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle,” Cell, vol. 99, no. 4, pp. 421–431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. Ferenczi, S. Y. Bershitsky, N. Koubassova et al., “The “roll and lock” mechanism of force generation in muscle,” Structure, vol. 13, no. 1, pp. 131–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. B. A. J. Baumann, H. Liang, K. Sale, B. D. Hambly, and P. G. Fajer, “Myosin regulatory domain orientation in skeletal muscle fibers: application of novel electron paramagnetic resonance spectral decomposition and molecular modeling methods,” Biophysical Journal, vol. 86, no. 5, pp. 3030–3041, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Wu, J. Liu, M. C. Reedy et al., “Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions,” PLoS ONE, vol. 5, no. 9, Article ID e12643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. D. A. Smith, M. A. Geeves, J. Sleep, and S. M. Mijailovich, “Towards a unified theory of muscle contraction. I: foundations,” Annals of Biomedical Engineering, vol. 36, no. 10, pp. 1624–1640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. B. C. Abbott, X. M. Aubert, and A. V. Hill, “The absorption of work when a muscle is stretched,” The Journal of Physiology, vol. 111, no. 1-2, pp. 41p–42p, 1950. View at Google Scholar · View at Scopus
  77. H. Ashikaga, T. I. G. van der Spoel, B. A. Coppola, and J. H. Omens, “Transmural myocardial mechanics during isovolumic contraction,” JACC: Cardiovascular Imaging, vol. 2, no. 2, pp. 202–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. N. A. Curtin and R. E. Davies, “Very high tension with very little ATP breakdown by active skeletal muscle,” Journal of Mechanochemistry and Cell Motility, vol. 3, no. 2, pp. 147–154, 1975. View at Google Scholar · View at Scopus
  79. V. Lombardi and G. Piazzesi, “The contractile response during steady lengthening of stimulated frog muscle fibres,” Journal of Physiology, vol. 431, pp. 141–171, 1990. View at Google Scholar · View at Scopus
  80. A. Mansson, “The tension response to stretch of intact skeletal muscle fibres of the frog at varied tonicity of the extracellular medium,” Journal of Muscle Research and Cell Motility, vol. 15, no. 2, pp. 145–157, 1994. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Colombini, M. Nocella, G. Benelli, G. Cecchi, P. J. Griffiths, and M. A. Bagni, “Reversal of the myosin power stroke induced by fast stretching of intact skeletal muscle fibers,” Biophysical Journal, vol. 97, no. 11, pp. 2922–2929, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Colombini, M. Nocella, G. Benelli, G. Cecchi, and M. A. Bagni, “Crossbridge properties during force enhancement by slow stretching in single intact frog muscle fibres,” The Journal of Physiology, vol. 585, no. 2, pp. 607–615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Nishizaka, H. Miyata, H. Yoshikawa, S. Ishiwata, and K. Kinosita Jr., “Unbinding force of a single motor molecule of muscle measured using optical tweezers,” Nature, vol. 377, no. 6546, pp. 251–254, 1995. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Guo and W. H. Guilford, “Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9844–9849, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. M. A. Bagni, G. Cecchi, and B. Colombini, “Crossbridge properties investigated by fast ramp stretching of activated frog muscle fibres,” Journal of Physiology, vol. 565, part 1, pp. 261–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. E. B. Getz, R. Cooke, and S. L. Lehman, “Phase transition in force during ramp stretches of skeletal muscle,” Biophysical Journal, vol. 75, no. 6, pp. 2971–2983, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. F. C. Minozzo, L. Hilbert, and D. E. Rassier, “Pre-power-stroke cross-bridges contribute to force transients during imposed shortening in isolated muscle fibers,” PLoS ONE, vol. 7, no. 1, Article ID e29356, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. J. A. Sleep and R. L. Hutton, “Exchange between inorganic phosphate and adenosine 5′-triphosphate in the medium by actomyosin subfragment,” Biochemistry, vol. 19, no. 7, pp. 1276–1283, 1980. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Kawai and H. R. Halvorson, “Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle,” Biophysical Journal, vol. 59, no. 2, pp. 329–342, 1991. View at Publisher · View at Google Scholar · View at Scopus
  90. J. A. Dantzig, M. G. Hibberd, D. R. Trentham, and Y. E. Goldman, “Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres,” The Journal of Physiology, vol. 432, pp. 639–680, 1991. View at Google Scholar · View at Scopus
  91. M. Nyitrai and M. A. Geeves, “Adenosine diphosphate and strain sensitivity in myosin motors,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1452, pp. 1867–1877, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. J. D. Jontes, E. M. Wilson-Kubalek, and R. A. Milligan, “A 32° tail swing in brush border myosin I on ADP release,” Nature, vol. 378, no. 6558, pp. 751–753, 1995. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Whittaker, E. M. Wilson-Kubalek, J. E. Smith, L. Faust, R. A. Milligant, and H. L. Sweeney, “A 35-A movement of smooth muscle myosin on ADP release,” Nature, vol. 378, no. 6558, pp. 748–751, 1995. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Veigel, L. M. Coluccio, J. D. Jontes, J. C. Sparrow, R. A. Milligan, and J. E. Molloy, “The motor protein myosin-I produces its working stroke in two steps,” Nature, vol. 398, no. 6727, pp. 530–533, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Gollub, C. R. Cremo, and R. Cooke, “ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin,” Nature Structural Biology, vol. 3, no. 9, pp. 796–802, 1996. View at Publisher · View at Google Scholar · View at Scopus
  96. S. S. Rosenfeld and H. L. Sweeney, “A model of myosin V processivity,” The Journal of Biological Chemistry, vol. 279, no. 38, pp. 40100–40111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Veigel, F. Wang, M. L. Bartoo, J. R. Sellers, and J. E. Molloy, “The gated gait of the processive molecular motor, myosin V,” Nature Cell Biology, vol. 4, no. 1, pp. 59–65, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Veigel, J. E. Molloy, S. Schmitz, and J. Kendrick-Jones, “Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers,” Nature Cell Biology, vol. 5, no. 11, pp. 980–986, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Kovács, K. Thirumurugan, P. J. Knight, and J. R. Sellers, “Load-dependent mechanism of nonmuscle myosin 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 24, pp. 9994–9999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Albet-Torres, M. J. Bloemink, T. Barman et al., “Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin,” The Journal of Biological Chemistry, vol. 284, no. 34, pp. 22926–22937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Nyitrai, R. Rossi, N. Adamek, M. A. Pellegrino, R. Bottinelli, and M. A. Geeves, “What limits the velocity of fast-skeletal muscle contraction in mammals?” Journal of Molecular Biology, vol. 355, no. 3, pp. 432–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Q. P. Uyeda, S. J. Kron, and J. A. Spudich, “Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin,” Journal of Molecular Biology, vol. 214, no. 3, pp. 699–710, 1990. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Walcott, D. M. Warshaw, and E. P. Debold, “Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements,” Biophysical Journal, vol. 103, no. 3, pp. 501–510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Sunderland, Mass, USA, 2001.
  105. T. L. Hill, “Theoretical formalism for the sliding filament model of contraction of striated muscle .Part I,” Progress in Biophysics and Molecular Biology, vol. 28, pp. 267–340, 1974. View at Publisher · View at Google Scholar · View at Scopus
  106. T. L. Hill, “Theoretical formalism for the sliding filament model of contraction of striated muscle part II,” Progress in Biophysics & Molecular Biology, vol. 29, pp. 105–159, 1976. View at Publisher · View at Google Scholar · View at Scopus
  107. E. Eisenberg and T. L. Hill, “A cross-bridge model of muscle contraction,” Progress in Biophysics and Molecular Biology, vol. 33, no. 1, pp. 55–82, 1978. View at Google Scholar · View at Scopus
  108. E. Eisenberg, T. L. Hill, and Y. Chen, “Cross-bridge model of muscle contraction. Quantitative analysis,” Biophysical Journal, vol. 29, no. 2, pp. 195–227, 1980. View at Publisher · View at Google Scholar · View at Scopus
  109. D. A. Smith and M. A. Geeves, “Strain-dependent cross-bridge cycle for muscle,” Biophysical Journal, vol. 69, no. 2, pp. 524–537, 1995. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Månsson, “Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle,” Biophysical Journal, vol. 98, no. 7, pp. 1237–1246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Persson, E. Bengtsson, L. ten Siethoff, and A. Månsson, “Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin,” Biophysical Journal, vol. 105, no. 8, pp. 1871–1881, 2013. View at Publisher · View at Google Scholar · View at Scopus
  112. F. Jülicher and J. Prost, “Cooperative molecular motors,” Physical Review Letters, vol. 75, no. 13, pp. 2618–2621, 1995. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Vilfan and E. Frey, “Oscillations in molecular motor assemblies,” Journal of Physics Condensed Matter, vol. 17, no. 47, pp. S3901–S3911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Offer and K. W. Ranatunga, “A cross-bridge cycle with two tension-generating steps simulates skeletal muscle mechanics,” Biophysical Journal, vol. 105, no. 4, pp. 928–940, 2013. View at Publisher · View at Google Scholar · View at Scopus
  115. C. Y. Seow, “Hill's equation of muscle performance and its hidden insight on molecular mechanisms,” The Journal of General Physiology, vol. 142, no. 6, pp. 561–573, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. C. J. Barclay, “Estimation of cross-bridge stiffness from maximum thermodynamic efficiency,” Journal of Muscle Research and Cell Motility, vol. 19, no. 8, pp. 855–864, 1998. View at Publisher · View at Google Scholar · View at Scopus
  117. D. A. Smith and M. A. Geeves, “Strain-dependent cross-bridge cycle for muscle II. Steady-state behavior,” Biophysical Journal, vol. 69, no. 2, pp. 538–552, 1995. View at Publisher · View at Google Scholar · View at Scopus
  118. Y.-D. Chen and B. Brenner, “On the regeneration of the actin-myosin power stroke in contracting muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 11, pp. 5148–5152, 1993. View at Publisher · View at Google Scholar · View at Scopus
  119. A. F. Huxley and S. Tideswell, “Rapid regeneration of power stroke in contracting muscle by attachment of second myosin head,” Journal of Muscle Research and Cell Motility, vol. 18, no. 1, pp. 111–114, 1997. View at Publisher · View at Google Scholar · View at Scopus
  120. L. Fusi, M. Reconditi, M. Linari et al., “The mechanism of the resistance to stretch of isometrically contracting single muscle fibres,” The Journal of Physiology, vol. 588, no. 3, pp. 495–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. D. A. Smith and S. M. Mijailovich, “Toward a unified theory of muscle contraction. II. Predictions with the mean-field approximation,” Annals of Biomedical Engineering, vol. 36, no. 8, pp. 1353–1371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Caremani, L. Melli, M. Dolfi, V. Lombardi, and M. Linari, “The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site,” The Journal of Physiology, vol. 591, part 20, pp. 5187–5205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Piazzesi and V. Lombardi, “A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle,” Biophysical Journal, vol. 68, no. 5, pp. 1966–1979, 1995. View at Publisher · View at Google Scholar · View at Scopus
  124. M. A. Ferenczi, S. Y. Bershitsky, N. A. Koubassova et al., “Why muscle is an efficient shock absorber,” PLoS ONE, vol. 9, no. 1, Article ID e85739, 2014. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Kozuka, H. Yokota, Y. Arai, Y. Ishii, and T. Yanagida, “Dynamic polymorphism of single actin molecules in the actin filament,” Nature Chemical Biology, vol. 2, no. 2, pp. 83–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. E. Prochniewicz, E. Katayama, T. Yanagida, and D. D. Thomas, “Cooperativity in F-actin: chemical modifications of actin monomers affect the functional interactions of myosin with unmodified monomers in the same actin filament,” Biophysical Journal, vol. 65, no. 1, pp. 113–123, 1993. View at Publisher · View at Google Scholar · View at Scopus
  127. V. E. Galkin, A. Orlova, and E. H. Egelman, “Actin filaments as tension sensors,” Current Biology, vol. 22, no. 3, pp. R96–R101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  128. V. E. Galkin, A. Orlova, G. F. Schröder, and E. H. Egelman, “Structural polymorphism in F-actin,” Nature Structural and Molecular Biology, vol. 17, no. 11, pp. 1318–1323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Orlova and E. H. Egelman, “A conformational change in the actin subunit can change the flexibility of the actin filament,” Journal of Molecular Biology, vol. 232, no. 2, pp. 334–341, 1993. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Q. P. Uyeda, Y. Iwadate, N. Umeki, A. Nagasaki, and S. Yumura, “Stretching actin filaments within cells enhances their affinity for the myosin ii motor domain,” PLoS ONE, vol. 6, no. 10, Article ID e26200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. K. Tokuraku, R. Kurogi, R. Toya, and T. Q. P. Uyeda, “Novel mode of cooperative binding between myosin and Mg2+ -actin filaments in the presence of low concentrations of ATP,” Journal of Molecular Biology, vol. 386, no. 1, pp. 149–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. P. G. Vikhorev, N. N. Vikhoreva, and A. Månsson, “Bending flexibility of actin filaments during motor-induced sliding,” Biophysical Journal, vol. 95, no. 12, pp. 5809–5819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. E. Prochniewicz, T. F. Walseth, and D. D. Thomas, “Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads,” Biochemistry, vol. 43, no. 33, pp. 10642–10652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. G. Miller, J. Maycock, E. White, M. Peckham, and S. Calaghan, “Heterologous expression of wild-type and mutant β-cardiac myosin changes the contractile kinetics of cultured mouse myotubes,” Journal of Physiology, vol. 548, no. 1, pp. 167–174, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. R. F. Sommese, J. Sung, S. Nag et al., “Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 31, pp. 12607–12612, 2013. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Bloemink, J. Deacon, S. Langer et al., “The hypertrophic cardiomyopathy myosin mutation R453C alters ATP binding and hydrolysis of human cardiac β-myosin,” Journal of Biological Chemistry, vol. 289, no. 8, pp. 5158–5167, 2014. View at Publisher · View at Google Scholar · View at Scopus
  137. D. I. Resnicow, J. C. Deacon, H. M. Warrick, J. A. Spudich, and L. A. Leinwand, “Functional diversity among a family of human skeletal muscle myosin motors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 3, pp. 1053–1058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. F. I. Malik, J. J. Hartman, K. A. Elias et al., “Cardiac myosin activation: a potential therapeutic approach for systolic heart failure,” Science, vol. 331, no. 6023, pp. 1439–1443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. B. P. Morgan, A. Muci, P.-P. Lu et al., “Discovery of omecamtiv mecarbil the first, selective, small molecule activator of cardiac myosin,” ACS Medicinal Chemistry Letters, vol. 1, no. 9, pp. 472–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. M. B. Radke, M. H. Taft, B. Stapel, D. Hilfiker-Kleiner, M. Preller, and D. J. Manstein, “Small molecule-mediated refolding and activation of myosin motor function,” eLife, vol. 2014, no. 3, Article ID e01603, 2014. View at Publisher · View at Google Scholar · View at Scopus
  141. J. Kohler, G. Winkler, I. Schulte et al., “Mutation of the myosin converter domain alters cross-bridge elasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3557–3562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Ferrantini, A. Belus, N. Piroddi, B. Scellini, C. Tesi, and C. Poggesi, “Mechanical and energetic consequences of HCM-causing mutations,” Journal of Cardiovascular Translational Research, vol. 2, no. 4, pp. 441–451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. L. M. Bond, D. A. Tumbarello, J. Kendrick-Jones, and F. Buss, “Small-molecule inhibitors of myosin proteins,” Future Medicinal Chemistry, vol. 5, no. 1, pp. 41–52, 2013. View at Publisher · View at Google Scholar · View at Scopus
  144. S. M. Heissler, J. Selvadurai, L. M. Bond et al., “Kinetic properties and small-molecule inhibition of human myosin-6,” FEBS Letters, vol. 586, no. 19, pp. 3208–3214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Preller, K. Chinthalapudi, R. Martin, H.-J. Knölker, and D. J. Manstein, “Inhibition of myosin ATPase activity by halogenated pseudilins: a structure-activity study,” Journal of Medicinal Chemistry, vol. 54, no. 11, pp. 3675–3685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Fedorov, M. Böhl, G. Tsiavaliaris et al., “The mechanism of pentabromopseudilin inhibition of myosin motor activity,” Nature Structural & Molecular Biology, vol. 16, no. 1, pp. 80–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. K. Chinthalapudi, M. H. Taft, R. Martin et al., “Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity,” The Journal of Biological Chemistry, vol. 286, no. 34, pp. 29700–29708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. I. Ramachandran, M. Terry, and M. B. Ferrari, “Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis,” Cell Motility and the Cytoskeleton, vol. 55, no. 1, pp. 61–72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. M. Kovács, J. Tóth, C. Hetényi, A. Málnási-Csizmadia, and J. R. Seller, “Mechanism of blebbistatin inhibition of myosin II,” The Journal of Biological Chemistry, vol. 279, no. 34, pp. 35557–35563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. A. F. Straight, A. Cheung, J. Limouze et al., “Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor,” Science, vol. 299, no. 5613, pp. 1743–1747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Regnier, C. Morris, and E. Homsher, “Regulation of the cross-bridge transition from a weakly to strongly bound state in skinned rabbit muscle fibers,” American Journal of Physiology, vol. 269, no. 6, part 1, pp. C1532–C1539, 1995. View at Google Scholar · View at Scopus
  152. M. Linari, G. Piazzesi, and V. Lombardi, “The effect of myofilament compliance on kinetics of force generation by myosin motors in muscle,” Biophysical Journal, vol. 96, no. 2, pp. 583–592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. D. F. A. McKillop, N. S. Fortune, K. W. Ranatunga, and M. A. Geeves, “The influence of 2,3-butanedione 2-monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibres,” Journal of Muscle Research and Cell Motility, vol. 15, no. 3, pp. 309–318, 1994. View at Google Scholar · View at Scopus
  154. M. A. Bagni, G. Cecchi, F. Colomo, and P. Garzella, “Effects of 2,3-butanedione monoxime on the crossbridge kinetics in frog single muscle fibres,” Journal of Muscle Research and Cell Motility, vol. 13, no. 5, pp. 516–522, 1992. View at Publisher · View at Google Scholar · View at Scopus
  155. Y.-B. Sun, F. Lou, and K. A. P. Edman, “The effects of 2,3-butanedione monoxime (BDM) on the force-velocity relation in single muscle fibres of the frog,” Acta Physiologica Scandinavica, vol. 153, no. 4, pp. 325–334, 1995. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Webb, D. R. Jackson, T. J. Stewart et al., “The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament,” Biochemistry, vol. 52, no. 37, pp. 6437–6444, 2013. View at Publisher · View at Google Scholar · View at Scopus
  157. J. S. Allingham, R. Smith, and I. Rayment, “The structural basis of blebbistatin inhibition and specificity for myosin II,” Nature Structural & Molecular Biology, vol. 12, no. 4, pp. 378–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. A. Månsson, “ATP-driven mechanical work performed by molecular motors,” in Encyclopedia of Biophysics, pp. 135–141, 2013. View at Google Scholar
  159. L. Chin, P. Yue, J. J. Feng, and C. Y. Seow, “Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship,” Biophysical Journal, vol. 91, no. 10, pp. 3653–3663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  160. P. B. Conibear and M. A. Geeves, “Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin,” Biophysical Journal, vol. 75, no. 2, pp. 926–937, 1998. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Månsson, “Translational actomyosin research: fundamental insights and applications hand in hand,” Journal of Muscle Research and Cell Motility, vol. 33, no. 3-4, pp. 219–233, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Mansson, M. Balaz, N. Albet-Torres, and K. J. Rosengren, “In vitro assays of molecular motors—impact of motor-surface interactions,” Frontiers in Bioscience, vol. 13, no. 15, pp. 5732–5754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. E. Homsher, F. Wang, and J. R. Sellers, “Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin,” American Journal of Physiology: Cell Physiology, vol. 262, no. 3, part 1, pp. C714–C723, 1992. View at Google Scholar · View at Scopus
  164. I. Chizhov, F. K. Hartmann, N. Hundt, and G. Tsiavaliaris, “Global fit analysis of myosin-5b motility reveals thermodynamics of Mg2+-sensitive acto-myosin-ADP states,” PLoS ONE, vol. 8, no. 5, Article ID e64797, 2013. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Methods in Cell Biology, vol. 55, pp. 1–27, 1998. View at Google Scholar · View at Scopus
  166. A. Ashkin, “Applications of laser radiation pressure,” Science, vol. 210, no. 4474, pp. 1081–1088, 1980. View at Publisher · View at Google Scholar · View at Scopus
  167. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophysical Journal, vol. 70, no. 4, pp. 1813–1822, 1996. View at Publisher · View at Google Scholar · View at Scopus
  168. M. J. Tyska, D. E. Dupuis, W. H. Guilford et al., “Two heads of myosin are better than one for generating force and motion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 8, pp. 4402–4407, 1999. View at Publisher · View at Google Scholar · View at Scopus
  169. C. Veigel, M. L. Bartoo, D. C. S. White, J. C. Sparrow, and J. E. Molloy, “The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer,” Biophysical Journal, vol. 75, no. 3, pp. 1424–1438, 1998. View at Publisher · View at Google Scholar · View at Scopus
  170. Y. Takagi, E. E. Homsher, Y. E. Goldman, and H. Shuman, “Force generation in single conventional actomyosin complexes under high dynamic load,” Biophysical Journal, vol. 90, no. 4, pp. 1295–1307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. H. Tanaka, A. Ishijima, M. Honda, K. Saito, and T. Yanagida, “Orientation dependence of displacements by a single one-headed myosin relative to the actin filament,” Biophysical Journal, vol. 75, no. 4, pp. 1886–1894, 1998. View at Publisher · View at Google Scholar · View at Scopus
  172. W. H. Guilford, D. E. Dupuis, G. Kennedy, J. Wu, J. B. Patlak, and D. M. Warshaw, “Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap,” Biophysical Journal, vol. 72, no. 3, pp. 1006–1021, 1997. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Rief, R. S. Rock, A. D. Mehta, M. S. Mooseker, R. E. Cheney, and J. A. Spudich, “Myosin-V stepping kinetics: a molecular model for processivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 17, pp. 9482–9486, 2000. View at Publisher · View at Google Scholar · View at Scopus
  174. K. Visscher, M. J. Schnltzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature, vol. 400, no. 6740, pp. 184–189, 1999. View at Publisher · View at Google Scholar · View at Scopus
  175. C. Veigel, S. Schmitz, F. Wang, and J. R. Sellers, “Load-dependent kinetics of myosin-V can explain its high processivity,” Nature Cell Biology, vol. 7, no. 9, pp. 861–869, 2005. View at Publisher · View at Google Scholar · View at Scopus
  176. E. M. de la Cruz, A. L. Wells, S. S. Rosenfeld, E. M. Ostap, and H. L. Sweeney, “The kinetic mechanism of myosin V,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13726–13731, 1999. View at Publisher · View at Google Scholar · View at Scopus
  177. J. E. Molloy, J. E. Burns, J. C. Sparrow et al., “Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers,” Biophysical Journal, vol. 68, no. 4, pp. 298S–305S, 1995. View at Google Scholar · View at Scopus
  178. J. E. Molloy, J. Kendrick-Jones, C. Veigel, and R. T. Tregear, “An unexpectedly large working stroke from chymotryptic fragments of myosin II,” FEBS Letters, vol. 480, no. 2-3, pp. 293–297, 2000. View at Publisher · View at Google Scholar · View at Scopus
  179. Y. Harada, A. Noguchi, A. Kishino, and T. Yanagida, “Sliding movement of single actin filaments on one-headed myosin filaments,” Nature, vol. 326, no. 6115, pp. 805–808, 1987. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Kishino and T. Yanagida, “Force measurements by micromanipulation of a single actin filament by glass needles,” Nature, vol. 334, no. 6177, pp. 74–76, 1988. View at Publisher · View at Google Scholar · View at Scopus
  181. W. Steffen, D. Smith, R. Simmons, and J. Sleep, “Mapping the actin filament with myosin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 14949–14954, 2001. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Capitanio, M. Canepari, M. Maffei et al., “Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke,” Nature Methods, vol. 9, no. 10, pp. 1013–1019, 2012. View at Publisher · View at Google Scholar · View at Scopus
  183. E. P. Debold, J. B. Patlak, and D. M. Warshaw, “Slip sliding away: load-dependence of velocity generated by skeletal muscle myosin molecules in the laser trap,” Biophysical Journal, vol. 89, no. 5, pp. L34–L36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  184. E. Pate, H. White, and R. Cooke, “Determination of the myosin step size from mechanical and kinetic data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 6, pp. 2451–2455, 1993. View at Publisher · View at Google Scholar · View at Scopus
  185. R. W. Ramsey and S. F. Street, “The isometric length-tension diagram of isolated skeletal muscle fibers of the frog,” Journal of Cellular and Comparative Physiology, vol. 15, no. 1, pp. 11–34, 1940. View at Publisher · View at Google Scholar
  186. J. Lannergren and H. Westerblad, “The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle,” Journal of Physiology, vol. 390, pp. 285–293, 1987. View at Google Scholar · View at Scopus
  187. F. J. Julian, “The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres,” The Journal of Physiology, vol. 218, no. 1, pp. 117–145, 1971. View at Google Scholar · View at Scopus
  188. R. Natori, “The role of myofibrils, sarcoplasm and sarcolemma,” Jikeikai Medical Journal, vol. 1, pp. 177–192, 1954. View at Google Scholar
  189. A. Szent-Gyorgyi, “Free-energy relations and contraction of actomyosin,” The Biological Bulletin, vol. 96, no. 2, pp. 140–161, 1949. View at Google Scholar
  190. A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proceedings of the Royal Society B, vol. 126, pp. 136–195, 1938. View at Google Scholar
  191. K. A. P. Edman, “Double-hyperbolic force-velocity relation in frog muscle fibres,” Journal of Physiology, vol. 404, pp. 301–321, 1988. View at Google Scholar · View at Scopus
  192. R. Cooke and E. Pate, “The effects of ADP and phosphate on the contraction of muscle fibers,” Biophysical Journal, vol. 48, no. 5, pp. 789–798, 1985. View at Publisher · View at Google Scholar · View at Scopus
  193. R. Cooke and W. Bialek, “Contraction of glycerinated muscle fibers as a function of the ATP concentration,” Biophysical Journal, vol. 28, no. 2, pp. 241–258, 1979. View at Publisher · View at Google Scholar · View at Scopus
  194. M. A. Ferenczi, Y. E. Goldman, and R. M. Simmons, “The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporara,” The Journal of Physiology, vol. 350, pp. 519–543, 1984. View at Google Scholar · View at Scopus
  195. G. Cecchi, F. Colomo, and V. Lombardi, “Force-velocity relation in normal and nitrate-treated frog single muscle fibres during rise of tension in an isometric tetanus,” Journal of Physiology, vol. 285, pp. 257–273, 1978. View at Google Scholar · View at Scopus
  196. M. Reconditi, M. Linari, L. Lucii et al., “The myosin motor in muscle generates a smaller and slower working stroke at higher load,” Nature, vol. 428, no. 6982, pp. 578–581, 2004. View at Publisher · View at Google Scholar · View at Scopus
  197. F. C. Minozzo and D. E. Rassier, “Effects of blebbistatin and Ca2+ concentration on force produced during stretch of skeletal muscle fibers,” American Journal of Physiology: Cell Physiology, vol. 299, no. 5, pp. C1127–C1135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. F. C. Minozzo and D. E. Rassier, “The effects of Ca2+ and MgADP on force development during and after muscle length changes,” PLoS ONE, vol. 8, no. 7, Article ID e68866, 2013. View at Publisher · View at Google Scholar · View at Scopus
  199. K. A. P. Edman, G. Elzinga, and M. I. M. Noble, “Critical sarcomere extension required to recruit a decaying component of extra force during stretch in tetanic contractions of frog skeletal muscle fibers,” The Journal of General Physiology, vol. 78, no. 4, pp. 365–382, 1981. View at Publisher · View at Google Scholar · View at Scopus
  200. F. W. Flitney and D. G. Hirst, “Cross-bridge detachment and sarcomere “give” during stretch of active frog's muscle,” The Journal of Physiology, vol. 276, pp. 449–465, 1978. View at Google Scholar · View at Scopus
  201. G. J. Pinniger, K. W. Ranatunga, and G. W. Offer, “Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: Force-induced reversal of the power stroke,” Journal of Physiology, vol. 573, part 3, pp. 627–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  202. H. Roots, G. W. Offer, and K. W. Ranatunga, “Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions,” Journal of Muscle Research and Cell Motility, vol. 28, no. 2-3, pp. 123–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  203. V. Lombardi, G. Piazzesi, and M. Linari, “Rapid regeneration of the actin-myosin power stroke in contracting muscle,” Nature, vol. 355, no. 6361, pp. 638–641, 1992. View at Publisher · View at Google Scholar · View at Scopus
  204. A. Mansson, “Changes in force and stiffness during stretch of skeletal muscle fibers, effects of hypertonicity,” Biophysical Journal, vol. 56, no. 2, pp. 429–433, 1989. View at Publisher · View at Google Scholar · View at Scopus
  205. K. A. P. Edman, G. Elzinga, and M. I. M. Noble, “Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres,” Journal of Physiology, vol. 281, pp. 139–155, 1978. View at Google Scholar · View at Scopus
  206. B. Colombini, M. A. Bagni, G. Romano, and G. Cecchi, “Characterization of actomyosin bond properties in intact skeletal muscle by force spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9284–9289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. D. E. Rassier, “Pre-power stroke cross bridges contribute to force during stretch of skeletal muscle myofibrils,” Proceedings of the Royal Society B: Biological Sciences, vol. 275, no. 1651, pp. 2577–2586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  208. M. Chinn, E. B. Getz, R. Cooke, and S. L. Lehman, “Force enhancement by PEG during ramp stretches of skeletal muscle,” Journal of Muscle Research and Cell Motility, vol. 24, no. 8, pp. 571–578, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. K. W. Ranatunga, “Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies,” Journal of Physiology, vol. 588, no. 19, pp. 3657–3670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  210. D. E. Rassier and W. Herzog, “Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM,” Journal of Applied Physiology, vol. 97, no. 4, pp. 1395–1400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  211. G. Piazzesi, M. Reconditi, N. Koubassova et al., “Temperature dependence of the force-generating process in single fibres from frog skeletal muscle,” The Journal of Physiology, vol. 549, no. 1, pp. 93–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  212. L. E. Ford, A. F. Huxley, and R. M. Simmons, “Tension responses to sudden length change in stimulated frog muscle fibres near slack length,” Journal of Physiology, vol. 269, no. 2, pp. 441–515, 1977. View at Google Scholar · View at Scopus
  213. L. E. Ford, A. F. Huxley, and R. M. Simmons, “The relation between stiffness and filament overlap in stimulated frog muscle fibres,” The Journal of Physiology, vol. 311, pp. 219–249, 1981. View at Google Scholar · View at Scopus
  214. L. E. Ford, A. F. Huxley, and R. M. Simmons, “Tension transients during steady shortening of frog muscle fibres,” Journal of Physiology, vol. 361, pp. 131–150, 1985. View at Google Scholar · View at Scopus
  215. L. E. Ford, A. F. Huxley, and R. M. Simmons, “Tension transients during the rise of tetanic tension in frog muscle fibres,” Journal of Physiology, vol. 372, pp. 595–609, 1986. View at Google Scholar · View at Scopus
  216. C. J. Barclay, R. C. Woledge, and N. A. Curtin, “Inferring crossbridge properties from skeletal muscle energetics,” Progress in Biophysics and Molecular Biology, vol. 102, no. 1, pp. 53–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  217. S. Y. Bershitsky, A. K. Tsaturyan, O. N. Bershitskaya et al., “Muscle force is generated by myosin heads stereospecifically attached to action,” Nature, vol. 388, no. 6638, pp. 186–190, 1997. View at Publisher · View at Google Scholar · View at Scopus
  218. B. Seebohm, F. Matinmehr, J. Köhler et al., “Cardiomyopathy mutations reveal variable region of myosin converter as major element of cross-bridge compliance,” Biophysical Journal, vol. 97, no. 3, pp. 806–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  219. K. Pant, J. Watt, M. Greenberg, M. Jones, D. Szczesna-Cordary, and J. R. Moore, “Removal of the cardiac myosin regulatory light chain increases isometric force production,” The FASEB Journal, vol. 23, no. 10, pp. 3571–3580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  220. I. Dobbie, M. Linari, G. Piazzesi et al., “Elastic bending and active tilting of myosin heads during muscle contraction,” Nature, vol. 396, no. 6709, pp. 383–387, 1998. View at Publisher · View at Google Scholar · View at Scopus
  221. A. Lewalle, W. Steffen, O. Stevenson, Z. Ouyang, and J. Sleep, “Single-molecule measurement of the stiffness of the rigor myosin head,” Biophysical Journal, vol. 94, no. 6, pp. 2160–2169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  222. G. Offer and K. W. Ranatunga, “Crossbridge and filament compliance in muscle: implications for tension generation and lever arm swing,” Journal of Muscle Research and Cell Motility, vol. 31, no. 4, pp. 245–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  223. S. Highsmith, “Electrostatic contributions to the binding of myosin and myosin-MgADP to F-actin in solution,” Biochemistry, vol. 29, no. 47, pp. 10690–10694, 1990. View at Publisher · View at Google Scholar · View at Scopus
  224. Y. Zhao and M. Kawai, “The hydrophobic interaction between actin and myosin underlies the mechanism of force generation by cross-bridges,” Biophysical Journal, vol. 68, no. 4, supplement, p. 332s, 1995. View at Google Scholar
  225. K. W. Ranatunga, M. E. Coupland, and G. Mutungi, “An asymmetry in the phosphate dependence of tension transients induced by length perturbation in mammalian (rabbit psoas) muscle fibres,” The Journal of Physiology, vol. 542, no. 3, pp. 899–910, 2002. View at Publisher · View at Google Scholar · View at Scopus
  226. Y. E. Goldman, J. A. McCray, and K. W. Ranatunga, “Transient tension changes initiated by laser temperature jumps in rabbit psoas muscle fibres,” The Journal of Physiology, vol. 392, pp. 71–95, 1987. View at Google Scholar · View at Scopus
  227. J. S. Davis and W. F. Harrington, “Force generation by muscle fibers in rigor: a laser temperature-jump study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 4, pp. 975–979, 1987. View at Publisher · View at Google Scholar · View at Scopus
  228. K. W. Ranatunga, “Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers,” Biophysical Journal, vol. 71, no. 4, pp. 1905–1913, 1996. View at Publisher · View at Google Scholar · View at Scopus
  229. J. S. Davis and M. E. Rodgers, “Force generation and temperature-jump and length-jump tension transients in muscle fibers,” Biophysical Journal, vol. 68, no. 5, pp. 2032–2040, 1995. View at Publisher · View at Google Scholar · View at Scopus
  230. J. S. Davis and N. D. Epstein, “Mechanistic role of movement and strain sensitivity in muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 15, pp. 6140–6145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  231. S. Y. Bershitsky and A. K. Tsaturyan, “Effect of joule temperature jump on tension and stiffness of skinned rabbit muscle fibers,” Biophysical Journal, vol. 56, no. 5, pp. 809–816, 1989. View at Publisher · View at Google Scholar · View at Scopus
  232. N. S. Fortune, M. A. Geeves, and K. W. Ranatunga, “Tension responses to rapid pressure release in glycerinated rabbit muscle fibers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 16, pp. 7323–7327, 1991. View at Publisher · View at Google Scholar · View at Scopus
  233. J. A. Dantzig, Y. E. Goldman, N. C. Millar, J. Lacktis, and E. Homsher, “Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres,” The Journal of Physiology, vol. 451, pp. 247–278, 1992. View at Google Scholar · View at Scopus
  234. E. Homsher, J. Lacktis, and M. Regnier, “Strain-dependent modulation of phosphate transients in rabbit skeletal muscle fibers,” Biophysical Journal, vol. 72, no. 4, pp. 1780–1791, 1997. View at Publisher · View at Google Scholar · View at Scopus
  235. C. Tesi, F. Colomo, S. Nencini, N. Piroddi, and C. Poggesi, “The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle,” Biophysical Journal, vol. 78, no. 6, pp. 3081–3092, 2000. View at Publisher · View at Google Scholar · View at Scopus
  236. M. Caremani, J. Dantzig, Y. E. Goldman, V. Lombardi, and M. Linari, “Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas,” Biophysical Journal, vol. 95, no. 12, pp. 5798–5808, 2008. View at Publisher · View at Google Scholar · View at Scopus
  237. U. A. van der Heide, M. Ketelaars, B. W. Treijtel, E. L. de Beer, and T. Blangé, “Strain dependence of the elastic properties of force-producing cross- bridges in rigor skeletal muscle,” Biophysical Journal, vol. 72, no. 2, part 1, pp. 814–821, 1997. View at Publisher · View at Google Scholar · View at Scopus
  238. H. E. Huxley, A. Stewart, H. Sosa, and T. Irving, “X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle,” Biophysical Journal, vol. 67, no. 6, pp. 2411–2421, 1994. View at Publisher · View at Google Scholar · View at Scopus
  239. K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophysical Journal, vol. 67, no. 6, pp. 2422–2435, 1994. View at Publisher · View at Google Scholar · View at Scopus
  240. H. Higuchi, T. Yanagida, and Y. E. Goldman, “Compliance of thin filaments in skinned fibers of rabbit skeletal muscle,” Biophysical Journal, vol. 69, no. 3, pp. 1000–1010, 1995. View at Publisher · View at Google Scholar · View at Scopus
  241. A. Månsson, “Significant impact on muscle mechanics of small nonlinearities in myofilament elasticity,” Biophysical Journal, vol. 99, no. 6, pp. 1869–1875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  242. K. A. P. Edman, “Non-linear myofilament elasticity in frog intact muscle fibres,” Journal of Experimental Biology, vol. 212, no. 8, pp. 1115–1119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  243. B. Colombina, M. Nocella, M. A. Bagni, P. J. Griffiths, and G. Cecchi, “Is the cross-bridge stiffness proportional to tension during muscle fiber activation?” Biophysical Journal, vol. 98, no. 11, pp. 2582–2590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  244. G. Piazzesi, M. Dolfi, E. Brunello et al., “The myofilament elasticity and its effect on kinetics of force generation by the myosin motor,” Archives of Biochemistry and Biophysics, vol. 552-553, pp. 108–116, 2014. View at Publisher · View at Google Scholar · View at Scopus
  245. H. E. Huxley, R. M. Simmons, A. R. Faruqi, M. Kress, J. Bordas, and M. H. J. Koch, “Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications,” Journal of Molecular Biology, vol. 169, no. 2, pp. 469–506, 1983. View at Publisher · View at Google Scholar · View at Scopus
  246. C. Knupp, G. Offer, K. W. Ranatunga, and J. M. Squire, “Probing muscle myosin motor action: x-ray (m3 and m6) interference measurements report motor domain not lever arm movement,” Journal of Molecular Biology, vol. 390, no. 2, pp. 168–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  247. H. E. Huxley, “Recent X-ray diffraction studies of muscle contraction and their implications,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1452, pp. 1879–1882, 2004. View at Publisher · View at Google Scholar · View at Scopus
  248. J. M. Squire and C. Knupp, “X-ray diffraction studies of muscle and the crossbridge cycle,” Advances in Protein Chemistry, vol. 71, pp. 195–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  249. S. Y. Bershitsky, M. A. Ferenczi, N. A. Koubassova, and A. K. Tsaturyan, “Insight into the actin-myosin motor from x-ray diffraction on muscle,” Frontiers in Bioscience, vol. 14, no. 8, pp. 3188–3213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  250. S. G. Campbell, P. C. Hatfield, and K. S. Campbell, “A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement,” PLoS Computational Biology, vol. 7, no. 9, Article ID e1002156, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  251. K. A. P. Edman, C. Reggiani, S. Schiaffino, and G. Te Kronnie, “Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres,” The Journal of Physiology, vol. 395, pp. 679–694, 1988. View at Google Scholar · View at Scopus
  252. K. A. P. Edman and C. Reggiani, “Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep,” Journal of Physiology, vol. 351, pp. 169–198, 1984. View at Google Scholar · View at Scopus
  253. D. Cleworth and K. A. P. Edman, “Laser diffraction studies on single skeletal muscle fibers,” Science, vol. 163, no. 3864, pp. 296–298, 1969. View at Publisher · View at Google Scholar · View at Scopus
  254. B. W. C. Rosser and E. Bandman, “Heterogeneity of protein expression within muscle fibers,” Journal of Animal Science, vol. 81, pp. E94–E101, 2003. View at Google Scholar
  255. C. Poggesi, C. Tesi, and R. Stehle, “Sarcomeric determinants of striated muscle relaxation kinetics,” Pflügers Archiv, vol. 449, no. 6, pp. 505–517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  256. R. Stehle, M. Krüger, and G. Pfitzer, “Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid Ca2+ changes,” Biophysical Journal, vol. 83, no. 4, pp. 2152–2161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  257. I. A. Telley, R. Stehle, K. W. Ranatunga, G. Pfitzer, E. Stüssi, and J. Denoth, “Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no “sarcomere popping”,” The Journal of Physiology, vol. 573, no. 1, pp. 173–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  258. S. Weiss, R. Rossi, M.-A. Pellegrino, R. Bottinelli, and M. A. Geeves, “Differing ADP release rates from myosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers,” Journal of Biological Chemistry, vol. 276, no. 49, pp. 45902–45908, 2001. View at Publisher · View at Google Scholar · View at Scopus
  259. P. Hook and L. Larsson, “Actomyosin interactions in a novel single muscle fiber in vitro motility assay,” Journal of Muscle Research and Cell Motility, vol. 21, no. 4, pp. 357–365, 2000. View at Google Scholar · View at Scopus
  260. M. Canepari, R. Rossi, M. A. Pellegrino, C. Reggiani, and R. Bottinelli, “Speeds of actin translocation in vitro by myosins extracted from single rat muscle fibres of different types,” Experimental Physiology, vol. 84, no. 4, pp. 803–806, 1999. View at Publisher · View at Google Scholar · View at Scopus
  261. M. Sata, S. Sugiura, H. Yamashita, S.-I. Momomura, and T. Serizawa, “Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro,” Circulation Research, vol. 73, no. 4, pp. 696–704, 1993. View at Publisher · View at Google Scholar · View at Scopus
  262. D. E. Harris and D. M. Warshaw, “Smooth and skeletal muscle actin are mechanically indistinguishable in the in vitro motility assay,” Circulation Research, vol. 72, no. 1, pp. 219–224, 1993. View at Publisher · View at Google Scholar · View at Scopus
  263. E. Homsher, D. M. Lee, C. Morris, D. Pavlov, and L. S. Tobacman, “Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium,” The Journal of Physiology, vol. 524, no. 1, pp. 233–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  264. M. Stewart, K. Franks-Skiba, and R. Cooke, “Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin,” Journal of Muscle Research and Cell Motility, vol. 30, no. 1-2, pp. 17–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  265. C. Tesi, F. Colomo, N. Piroddi, and C. Poggesi, “Characterization of the cross-bridge force-generating step using inorganic phosphate and BDM in myofibrils from rabbit skeletal muscles,” Journal of Physiology, vol. 541, no. 1, pp. 187–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  266. C. Pun, A. Syed, and D. E. Rassier, “History-dependent properties of skeletal muscle myofibrils contracting along the ascending limb of the force-length relationship,” Proceedings of the Royal Society B: Biological Sciences, vol. 277, no. 1680, pp. 475–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  267. B. Brenner and E. Eisenberg, “Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 10, pp. 3542–3546, 1986. View at Publisher · View at Google Scholar · View at Scopus
  268. A. Belus, N. Piroddi, B. Scellini et al., “The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils,” The Journal of Physiology, vol. 586, no. 15, pp. 3639–3644, 2008. View at Publisher · View at Google Scholar · View at Scopus
  269. S. Kurosaka, N. A. Leu, I. Pavlov et al., “Arginylation regulates myofibrils to maintain heart function and prevent dilated cardiomyopathy,” Journal of Molecular and Cellular Cardiology, vol. 53, no. 3, pp. 333–341, 2012. View at Publisher · View at Google Scholar · View at Scopus
  270. P. A. B. Ribeiro, J. P. Ribeiro, F. C. Minozzo et al., “Contractility of myofibrils from the heart and diaphragm muscles measured with atomic force cantilevers: effects of heart-specific deletion of arginyl-tRNA-protein transferase,” International Journal of Cardiology, vol. 168, no. 4, pp. 3564–3571, 2013. View at Publisher · View at Google Scholar · View at Scopus
  271. D. E. Rassier and I. Pavlov, “Force produced by isolated sarcomeres and half-sarcomeres after an imposed stretch,” The American Journal of Physiology—Cell Physiology, vol. 302, no. 1, pp. C240–C248, 2012. View at Publisher · View at Google Scholar · View at Scopus
  272. F. C. Minozzo, B. M. Baroni, J. A. Correa, M. A. Vaz, and D. E. Rassier, “Force produced after stretch in sarcomeres and half-sarcomeres isolated from skeletal muscles,” Scientific Reports, vol. 3, article 2320, 2013. View at Publisher · View at Google Scholar · View at Scopus
  273. R. R. Schroder, D. J. Manstein, W. Jahn et al., “Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1,” Nature, vol. 364, no. 6433, pp. 171–174, 1993. View at Publisher · View at Google Scholar · View at Scopus
  274. M. Lorenz and K. C. Holmes, “The actin-myosin interface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 28, pp. 12529–12534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  275. S. Fischer, B. Windshügel, D. Horak, K. C. Holmes, and J. C. Smith, “Structural mechanism of the recovery stroke in the myosin molecular motor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6873–6878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  276. C. A. Smith and I. Rayment, “X-ray structure of the magnesium(II)-pyrophosphate complex of the truncated head of Dictyostelium discoideum myosin to 2.7 A resolution,” Biochemistry, vol. 34, no. 28, pp. 8973–8981, 1995. View at Publisher · View at Google Scholar · View at Scopus
  277. R. Dominguez, Y. Freyzon, K. M. Trybus, and C. Cohen, “Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state,” Cell, vol. 94, no. 5, pp. 559–571, 1998. View at Publisher · View at Google Scholar · View at Scopus
  278. S. Gourinath, D. M. Himmel, J. H. Brown, L. Reshetnikova, A. G. Szent-Györgyi, and C. Cohen, “Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 Å resolution: flexibility and function in the head,” Structure, vol. 11, no. 12, pp. 1621–1627, 2003. View at Publisher · View at Google Scholar · View at Scopus
  279. A. Houdusse, A. G. Szent-Györgyi, and C. Cohen, “Three conformational states of scallop myosin S1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11238–11243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  280. C. B. Bauer, H. M. Holden, J. B. Thoden, R. Smith, and I. Rayment, “X-ray structures of the Apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain,” The Journal of Biological Chemistry, vol. 275, no. 49, pp. 38494–38499, 2000. View at Publisher · View at Google Scholar · View at Scopus
  281. A. M. Gulick, C. B. Bauer, J. B. Thoden, and I. Rayment, “X-ray structures of the MgADP, MgATPγS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain,” Biochemistry, vol. 36, no. 39, pp. 11619–11628, 1997. View at Publisher · View at Google Scholar · View at Scopus
  282. J. Ménétrey, P. Llinas, J. Cicolari et al., “The post-rigor structure of myosin VI and implications for the recovery stroke,” The EMBO Journal, vol. 27, no. 1, pp. 244–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  283. D. A. Winkelmann, T. S. Baker, and I. Rayment, “Three-dimensional structure of myosin subfragment-1 from electron microscopy of sectioned crystals,” The Journal of Cell Biology, vol. 114, no. 4, pp. 701–713, 1991. View at Publisher · View at Google Scholar · View at Scopus
  284. P.-D. Coureux, H. L. Sweeney, and A. Houdusse, “Three myosin V structures delineate essential features of chemo-mechanical transduction,” The EMBO Journal, vol. 23, no. 23, pp. 4527–4537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  285. J. Menetrey, A. Bahloul, A. L. Wells et al., “The structure of the myosin VI motor reveals the mechanism of directionality reversal,” Nature, vol. 435, no. 7043, pp. 779–785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  286. P.-D. Coureux, A. L. Wells, J. Ménétrey et al., “A structural state of the myosin V motor without bound nucleotide,” Nature, vol. 425, no. 6956, pp. 419–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  287. T. F. Reubold, S. Eschenburg, A. Becker, F. J. Kull, and D. J. Manstein, “A structural model for actin-induced nucleotide release in myosin,” Nature Structural Biology, vol. 10, no. 10, pp. 826–830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  288. Y. Yang, S. Gourinath, M. Kovács et al., “Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor,” Structure, vol. 15, no. 5, pp. 553–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  289. B. Takács, E. O'Neall-Hennessey, C. Hetényi, J. Kardos, A. G. Szent-Györgyi, and M. Kovács, “Myosin cleft closure determines the energetics of the actomyosin interaction,” The FASEB Journal, vol. 25, no. 1, pp. 111–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  290. K. C. Holmes, I. Angert, F. J. Kull, W. Jahn, and R. R. Schröder, “Elechron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide,” Nature, vol. 425, no. 6956, pp. 423–427, 2003. View at Publisher · View at Google Scholar · View at Scopus
  291. E. Behrmann, M. Müller, P. A. Penczek, H. G. Mannherz, D. J. Manstein, and S. Raunser, “Structure of the rigor actin-tropomyosin-myosin complex,” Cell, vol. 150, no. 2, pp. 327–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  292. M. A. Geeves, T. E. Jeffries, and N. C. Millar, “ATP-induced dissociation of rabbit skeletal actomyosin subfragment 1. Characterization of an isomerization of the ternary Acto-S1-ATP complex,” Biochemistry, vol. 25, no. 26, pp. 8454–8458, 1986. View at Publisher · View at Google Scholar · View at Scopus
  293. M. Furch, S. Fujita-Becker, M. A. Geeves, K. C. Holmes, and D. J. Manstein, “Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin,” Journal of Molecular Biology, vol. 290, no. 3, pp. 797–809, 1999. View at Publisher · View at Google Scholar · View at Scopus
  294. H. Onishi, M. F. Morales, S.-I. Kojima, K. Katoh, and K. Fujiwara, “Functional transitions in myosin: role of highly conserved Gly and Glu residues in the active site,” Biochemistry, vol. 36, no. 13, pp. 3767–3772, 1997. View at Publisher · View at Google Scholar · View at Scopus
  295. N. Sasaki and K. Sutoh, “Structure-mutation analysis of the ATPase site of Dictyostelium discoideum myosin II,” Advances in Biophysics, vol. 35, pp. 1–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  296. N. Sasaki, T. Shimada, and K. Sutoh, “Mutational analysis of the switch II loop of Dictyostelium myosin II,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 20334–20340, 1998. View at Publisher · View at Google Scholar · View at Scopus
  297. P. B. Conibear, C. R. Bagshaw, P. G. Fajer, M. Kovács, and A. Málnási-Csizmadia, “Myosin cleft movement and its coupling to actomyosin dissociation,” Nature Structural Biology, vol. 10, no. 10, pp. 831–835, 2003. View at Publisher · View at Google Scholar · View at Scopus
  298. H. Onishi, N. Mochizuki, and M. F. Morales, “On the myosin catalysis of ATP hydrolysis,” Biochemistry, vol. 43, no. 13, pp. 3757–3763, 2004. View at Publisher · View at Google Scholar · View at Scopus
  299. T. Ohki, S. V. Mikhailenko, M. F. Morales, H. Onishi, and N. Mochizuki, “Transmission of force and displacement within the myosin molecule,” Biochemistry, vol. 43, no. 43, pp. 13707–13714, 2004. View at Publisher · View at Google Scholar · View at Scopus
  300. A. J. Fisher, C. A. Smith, J. B. Thoden et al., “X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP·BeFx and MgADP·AlF4-,” Biochemistry, vol. 34, no. 28, pp. 8960–8972, 1995. View at Publisher · View at Google Scholar · View at Scopus
  301. A. J. Fisher, C. A. Smith, J. Thoden et al., “Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction,” Biophysical Journal, vol. 68, no. 4, supplement, pp. 19S–28S, 1995. View at Google Scholar
  302. G. Tsiavaliaris, S. Fujita-Becker, R. Batra et al., “Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in dictyostelium,” EMBO Reports, vol. 3, no. 11, pp. 1099–1105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  303. S. Mesentean, S. Koppole, J. C. Smith, and S. Fischer, “The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor,” Journal of Molecular Biology, vol. 367, no. 2, pp. 591–602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  304. A. Málnási-Csizmadia, J. Tóth, D. S. Pearson et al., “Selective perturbation of the myosin recovery stroke by point mutations at the base of the lever arm affects ATP hydrolysis and phosphate release,” The Journal of Biological Chemistry, vol. 282, no. 24, pp. 17658–17664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  305. S. Koppole, J. C. Smith, and S. Fischer, “The structural coupling between ATPase activation and recovery stroke in the myosin II motor,” Structure, vol. 15, no. 7, pp. 825–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  306. S. Koppole, J. C. Smith, and S. Fischer, “Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke,” Journal of Molecular Biology, vol. 361, no. 3, pp. 604–616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  307. M. Gyimesi, B. Kintses, A. Bodor et al., “The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II,” The Journal of Biological Chemistry, vol. 283, no. 13, pp. 8153–8163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  308. A. Baumketner, “The mechanism of the converter domain rotation in the recovery stroke of myosin motor protein,” Proteins, vol. 80, no. 12, pp. 2701–2710, 2012. View at Publisher · View at Google Scholar · View at Scopus
  309. A. Baumketner and Y. Nesmelov, “Early stages of the recovery stroke in myosin II studied by molecular dynamics simulations,” Protein Science, vol. 20, no. 12, pp. 2013–2022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  310. C. M. Yengo and H. L. Sweeney, “Functional role of loop 2 in myosin V,” Biochemistry, vol. 43, no. 9, pp. 2605–2612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  311. A. Lieto-Trivedi, S. Dash, and L. M. Coluccio, “Myosin surface loop 4 modulates inhibition of actomyosin 1b atpase activity by tropomyosin,” Biochemistry, vol. 46, no. 10, pp. 2779–2786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  312. D. Funabara, R. Osawa, M. Ueda, S. Kanoh, D. J. Hartshorne, and S. Watabe, “Myosin loop 2 is involved in the formation of a trimeric complex of twitchin, actin, and myosin,” The Journal of Biological Chemistry, vol. 284, no. 27, pp. 18015–18020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  313. A. M. Clobes and W. H. Guilford, “Loop 2 of myosin is a force-dependent inhibitor of the rigor bond,” Journal of Muscle Research and Cell Motility, vol. 35, no. 2, pp. 143–152, 2014. View at Publisher · View at Google Scholar · View at Scopus
  314. B. H. Várkuti, Z. Yang, B. Kintses et al., “A novel actin binding site of myosin required for effective muscle contraction,” Nature Structural & Molecular Biology, vol. 19, no. 3, pp. 299–306, 2012. View at Publisher · View at Google Scholar · View at Scopus
  315. H. Onishi, S. V. Mikhailenko, and M. F. Morales, “Toward understanding actin activation of myosin ATPase: the role of myosin surface loops,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6136–6141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  316. F. G. Díaz Baños, J. Bordas, J. Lowy, and A. Svensson, “Small segmental rearrangements in the myosin head can explain force generation in muscle,” Biophysical Journal, vol. 71, no. 2, pp. 576–589, 1996. View at Publisher · View at Google Scholar · View at Scopus
  317. D. D. Thomas, E. Prochniewicz, and O. Roopnarine, “Changes in actin and myosin structural dynamics due to their weak and strong interactions,” Results and Problems in Cell Differentiation, vol. 36, pp. 7–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  318. M. Preller and K. C. Holmes, “The myosin start-of-power stroke state and how actin binding drives the power stroke,” Cytoskeleton, vol. 70, no. 10, pp. 651–660, 2013. View at Publisher · View at Google Scholar · View at Scopus
  319. B. Kintses, M. Gyimesi, D. S. Pearson et al., “Reversible movement of switch 1 loop of myosin determines actin interaction,” The EMBO Journal, vol. 26, no. 1, pp. 265–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  320. W. Zeng, P. B. Conibear, J. L. Dickens et al., “Dynamics of actomyosin interactions in relation to the cross-bridge cycle,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1452, pp. 1843–1855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  321. J. Sleep, M. Irving, and K. Burton, “The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle,” The Journal of Physiology, vol. 563, part 3, pp. 671–687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  322. Z.-H. He, R. K. Chillingworth, M. Brune et al., “ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay,” The Journal of Physiology, vol. 501, no. 1, pp. 125–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  323. J. M. Muretta, K. J. Petersen, and D. D. Thomas, “Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 18, pp. 7211–7216, 2013. View at Publisher · View at Google Scholar · View at Scopus
  324. D. A. Smith and J. Sleep, “Mechanokinetics of rapid tension recovery in muscle: the myosin working stroke is followed by a slower release of phosphate,” Biophysical Journal, vol. 87, no. 1, pp. 442–456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  325. C. Lionne, M. Brune, M. R. Webb, F. Travers, and T. Barman, “Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPases,” FEBS Letters, vol. 364, no. 1, pp. 59–62, 1995. View at Publisher · View at Google Scholar · View at Scopus
  326. R. F. Siemankowski, M. O. Wiseman, and H. D. White, “ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 3, pp. 658–662, 1985. View at Publisher · View at Google Scholar · View at Scopus
  327. R. Elangovan, M. Capitanio, L. Melli, F. S. Pavone, V. Lombardi, and G. Piazzesi, “An integrated in vitro and in situ study of kinetics of myosin II from frog skeletal muscle,” The Journal of Physiology, vol. 590, no. 5, pp. 1227–1242, 2012. View at Publisher · View at Google Scholar · View at Scopus
  328. R. Bowater and J. Sleep, “Demembranated muscle fibers catalyze a more rapid exchange between phosphate and adenosine triphosphate than actomyosin subfragment,” Biochemistry, vol. 27, no. 14, pp. 5314–5323, 1988. View at Publisher · View at Google Scholar · View at Scopus
  329. C. Mansfield, T. G. West, N. A. Curtin, and M. A. Ferenczi, “Stretch of contracting cardiac muscle abruptly decreases the rate of phosphate release at high and low calcium,” The Journal of Biological Chemistry, vol. 287, no. 31, pp. 25696–25705, 2012. View at Publisher · View at Google Scholar · View at Scopus
  330. Y. Takagi, H. Shuman, and Y. E. Goldman, “Coupling between phosphate release and force generation in muscle actomyosin,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1452, pp. 1913–1920, 2004. View at Publisher · View at Google Scholar · View at Scopus
  331. E. Pate and R. Cooke, “A model of crossbridge action: the effects of ATP, ADP and Pi,” Journal of Muscle Research and Cell Motility, vol. 10, no. 3, pp. 181–196, 1989. View at Publisher · View at Google Scholar · View at Scopus
  332. J. Liu, T. Wendt, D. Taylor, and K. Taylor, “Refined model of the 10S conformation of smooth muscle myosin by cryo-electron microscopy 3D image reconstruction,” Journal of Molecular Biology, vol. 329, no. 5, pp. 963–972, 2003. View at Publisher · View at Google Scholar · View at Scopus
  333. J. W. Shriver, “Energy transduction in myosin,” Trends in Biochemical Sciences, vol. 9, no. 7, pp. 322–328, 1984. View at Publisher · View at Google Scholar · View at Scopus
  334. S. Xu, H. D. White, G. W. Offer, and L. C. Yu, “Stabilization of helical order in the thick filaments by blebbistatin: further evidence of coexisting multiple conformations of myosin,” Biophysical Journal, vol. 96, no. 9, pp. 3673–3681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  335. M. F. Norstrom, P. A. Smithback, and R. S. Rock, “Unconventional processive mechanics of non-muscle myosin IIB,” The Journal of Biological Chemistry, vol. 285, no. 34, pp. 26326–26334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  336. D. D. Hackney and P. K. Clark, “Catalytic consequences of oligometric organization: Kinetic evidence for “tethered” acto-heavy meromyosin at low ATP concentrations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 17, pp. 5345–5349, 1984. View at Publisher · View at Google Scholar · View at Scopus
  337. S. Ishiwata, Y. Shimamoto, D. Sasaki, and M. Suzuki, “Molecular synchronization in actomyosin motors—from single molecule to muscle fiber via nanomuscle,” Advances in Experimental Medicine and Biology, vol. 565, pp. 25–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  338. K. Ito, X. Liu, E. Katayama, and T. Q. P. Uyeda, “Cooperativity between two heads of Dictyostelium myosin II in in vitro motility and ATP hydrolysis,” Biophysical Journal, vol. 76, no. 2, pp. 985–992, 1999. View at Publisher · View at Google Scholar · View at Scopus
  339. J. E. Molloy, “Muscle contraction: actin filaments enter the fray,” Biophysical Journal, vol. 89, no. 1, pp. 1–2, 2005. View at Publisher · View at Google Scholar · View at Scopus
  340. D. S. Lidke and D. D. Thomas, “Coordination of the two heads of myosin during muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 14801–14806, 2002. View at Publisher · View at Google Scholar · View at Scopus
  341. N. M. Kad, A. S. Rovner, P. M. Fagnant et al., “A mutant heterodimeric myosin with one inactive head generates maximal displacement,” The Journal of Cell Biology, vol. 162, no. 3, pp. 481–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  342. R. D. Vale and R. A. Milligan, “The way things move: looking under the hood of molecular motor proteins,” Science, vol. 288, no. 5463, pp. 88–95, 2000. View at Publisher · View at Google Scholar · View at Scopus
  343. F. Oosawa, Y. Maeda, S. Fujime, S. Ishiwata, T. Yanagida, and M. Taniguchi, “Dynamic characteristics of F-actin and thin filaments in vivo and in vitro,” Journal of Mechanochemistry & Cell Motility, vol. 4, no. 1, pp. 63–78, 1977. View at Google Scholar · View at Scopus
  344. A. K. Tsaturyan, N. Koubassova, M. A. Ferenczi, T. Narayanan, M. Roessle, and S. Y. Bershitsky, “Strong binding of myosin heads stretches and twists the actin helix,” Biophysical Journal, vol. 88, no. 3, pp. 1902–1910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  345. E. H. Egelman, “New angles on actin dynamics,” Structure, vol. 5, no. 9, pp. 1135–1137, 1997. View at Publisher · View at Google Scholar · View at Scopus
  346. C. E. Schutt and U. Lindberg, “Actin as the generator of tension during muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 1, pp. 319–323, 1992. View at Publisher · View at Google Scholar · View at Scopus
  347. B. C. W. Tanner, T. L. Daniel, and M. Regnier, “Sarcomere lattice geometry influences cooperative myosin binding in muscle,” PLoS Computational Biology, vol. 3, no. 7, article e115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  348. F. Bai, L. Wang, and M. Kawai, “A study of tropomyosin's role in cardiac function and disease using thin-filament reconstituted myocardium,” Journal of Muscle Research and Cell Motility, vol. 34, no. 3-4, pp. 295–310, 2013. View at Publisher · View at Google Scholar · View at Scopus
  349. A. S. Cornachione and D. E. Rassier, “A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction,” American Journal of Physiology: Cell Physiology, vol. 302, no. 3, pp. C566–C574, 2012. View at Publisher · View at Google Scholar · View at Scopus
  350. J. E. Baker, C. Brosseau, P. B. Joel, and D. M. Warshaw, “The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules,” Biophysical Journal, vol. 82, no. 4, pp. 2134–2147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  351. M. W. Elting and J. A. Spudich, “Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors,” Developmental Cell, vol. 23, no. 6, pp. 1084–1091, 2012. View at Publisher · View at Google Scholar · View at Scopus
  352. M. Lard, L. Ten Siethoff, A. Mansson, and H. Linke, “Molecular motor transport through hollow nanowires,” Nano Letters, vol. 14, no. 6, pp. 3041–3046, 2014. View at Google Scholar
  353. G. Tsiavaliaris, S. Fujita-Becker, and D. J. Manstein, “Molecular engineering of a backwards-moving myosin motor,” Nature, vol. 427, no. 6974, pp. 558–561, 2004. View at Publisher · View at Google Scholar · View at Scopus
  354. T. D. Schindler, L. Chen, P. Lebel, M. Nakamura, and Z. Bryant, “Engineering myosins for long-range transport on actin filaments,” Nature Nanotechnology, vol. 9, no. 1, pp. 33–38, 2014. View at Publisher · View at Google Scholar · View at Scopus
  355. M. Amrute-Nayak, R. P. Diensthuber, W. Steffen et al., “Targeted optimization of a protein nanomachine for operation in biohybrid devices,” Angewandte Chemie International Edition, vol. 49, no. 2, pp. 312–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  356. S. S. Margossian and S. Lowey, “Preparation of myosin and its subfragments from rabbit skeletal muscle,” Methods in Enzymology, vol. 85, pp. 55–71, 1982. View at Publisher · View at Google Scholar · View at Scopus
  357. S. J. Kron, Y. Y. Toyoshima, T. Q. P. Uyeda, and J. A. Spudich, “Assays for actin sliding movement over myosin-coated surfaces,” Methods in Enzymology, vol. 196, pp. 399–416, 1991. View at Publisher · View at Google Scholar · View at Scopus
  358. W. Kliche, S. Fujita-Becker, M. Kollmar, D. J. Manstein, and F. J. Kull, “Structure of a genetically engineered molecular motor,” The EMBO Journal, vol. 20, no. 1-2, pp. 40–46, 2001. View at Publisher · View at Google Scholar · View at Scopus
  359. P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry, vol. 43, no. 49, pp. 15404–15417, 2004. View at Publisher · View at Google Scholar · View at Scopus