Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 273936, 9 pages
http://dx.doi.org/10.1155/2015/273936
Research Article

Induction of Ankrd1 in Dilated Cardiomyopathy Correlates with the Heart Failure Progression

1Department of Integrative Pathophysiology, Medical Faculty Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
2Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio g. 21, LT-03101 Vilnius, Lithuania
3Vilnius University Hospital Santariskiu Klinikos, Santariškiu g. 2, LT-08661 Vilnius, Lithuania
4State Research Institute, Center for Innovative Medicine, Department of Stem Cell Biology, Žygimantu g. 9, LT-01102 Vilnius, Lithuania
5Vilnius University Institute of Biochemistry, Mokslininku g. 12, LT-08660 Vilnius, Lithuania
6Experimental and Clinical Research Center (ECRC), Max-Delbrueck Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, Buch, 13125 Berlin, Germany

Received 19 August 2014; Accepted 8 October 2014

Academic Editor: Olga Mayans

Copyright © 2015 Julius Bogomolovas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Jasaityte, M. Dandel, H. Lehmkuhl, and R. Hetzer, “rediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging,” Transplantation Proceedings, vol. 41, no. 1, pp. 277–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. M. Kang and S. Izumo, “Apoptosis and heart failure: a critical review of the literature,” Circulation Research, vol. 86, no. 11, pp. 1107–1113, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Knöll and B. Buyandelger, “Z-disc transcriptional coupling, sarcomeroptosis and mechanoptosis,” Cell Biochemistry and Biophysics, vol. 66, no. 1, pp. 65–71, 2013. View at Publisher · View at Google Scholar
  4. M. K. Miller, M.-L. Bang, C. C. Witt et al., “The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules,” Journal of Molecular Biology, vol. 333, no. 5, pp. 951–964, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Aihara, M. Kurabayashi, Y. Saito et al., “Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter,” Hypertension, vol. 36, no. 1, pp. 48–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. F. Nagueh, G. Shah, Y. Wu et al., “Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy,” Circulation, vol. 110, no. 2, pp. 155–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y.-J. Wei, C.-J. Cui, Y.-X. Huang, X.-L. Zhang, H. Zhang, and S.-S. Hu, “Upregulated expression of cardiac ankyrin repeat protein in human failing hearts due to arrhythmogenic right ventricular cardiomyopathy,” European Journal of Heart Failure, vol. 11, no. 6, pp. 559–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Moulik, M. Vatta, S. H. Witt et al., “ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene,” Journal of the American College of Cardiology, vol. 54, no. 4, pp. 325–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Arimura, J. M. Bos, A. Sato et al., “Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy,” Journal of the American College of Cardiology, vol. 54, no. 4, pp. 334–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M.-J. Lee, Y.-K. Kwak, K.-R. You, B.-H. Lee, and D.-G. Kim, “Involvement of GADD153 and cardiac ankyrin repeat protein in cardiac ischemia-reperfusion injury,” Experimental and Molecular Medicine, vol. 41, no. 4, pp. 243–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. X.-J. Han, J.-K. Chae, M.-J. Lee, K.-R. You, B.-H. Lee, and D.-G. Kim, “Involvement of GADD153 and cardiac ankyrin repeat protein in hypoxia-induced apoptosis of H9c2 cells,” The Journal of Biological Chemistry, vol. 280, no. 24, pp. 23122–23129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. J. Lee, D. Rudenko, M. A. Kuliszewski et al., “Survivin gene therapy attenuates left ventricular systolic dysfunction in doxorubicin cardiomyopathy by reducing apoptosis and fibrosis,” Cardiovascular Research, vol. 101, no. 3, pp. 423–433, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Nakamura, Y. Ueda, Y. Juan, S. Katsuda, H. Takahashi, and E. Koh, “Fas-mediated apoptosis in Adriamycin-induced cardiomyopathy in rats: in vivo study,” Circulation, vol. 102, no. 5, pp. 572–578, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Chen, L. Zhong, S. F. Roush et al., “Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy,” PLoS ONE, vol. 7, no. 4, Article ID e35743, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. S. Yuan, A. Reed, F. Chen, and C. N. Stewart Jr., “Statistical analysis of real-time PCR data,” BMC Bioinformatics, vol. 7, article 85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. N. L. Greenberg, M. S. Firstenberg, P. L. Castro et al., “Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility,” Circulation, vol. 105, no. 1, pp. 99–105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. W. C. Little, M. Ohno, D. W. Kitzman, J. D. Thomas, and C.-P. Cheng, “Determination of left ventricular chamber stiffness from the time for deceleration of early left ventricular filling,” Circulation, vol. 92, no. 7, pp. 1933–1939, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Wencker, M. Chandra, K. Nguyen et al., “A mechanistic role for cardiac myocyte apoptosis in heart failure,” The Journal of Clinical Investigation, vol. 111, no. 10, pp. 1497–1504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K.-L. Laugwitz, A. Schömig, M. Ungerer et al., “Blocking caspase-activated apoptosis improves contractility in failing myocardium,” Human Gene Therapy, vol. 12, no. 17, pp. 2051–2063, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Cheng, M. G. Larson, E. L. McCabe et al., “Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the framingham heart study,” Circulation: Cardiovascular Imaging, vol. 6, no. 5, pp. 692–699, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. N. Oltvai, C. L. Milliman, and S. J. Korsmeyer, “Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death,” Cell, vol. 74, no. 4, pp. 609–619, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. G. M. Cohen, “Caspases: the executioners of apoptosis,” The Biochemical Journal, vol. 326, no. 1, pp. 1–16, 1997. View at Google Scholar · View at Scopus
  23. Ö. Akyürek, N. Akyürek, T. Sayin et al., “Association between the severity of heart failure and the susceptibility of myocytes to apoptosis in patients with idiopathic dilated cardiomyopathy,” International Journal of Cardiology, vol. 80, no. 1, pp. 29–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Kosmala, R. Plaksej, J. M. Strotmann et al., “Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study,” Journal of the American Society of Echocardiography, vol. 21, no. 12, pp. 1309–1317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. S. Rihal, R. A. Nishimura, L. K. Hatle, K. R. Bailey, and A. J. Tajik, “Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy: relation to symptoms and prognosis,” Circulation, vol. 90, no. 6, pp. 2772–2779, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Ibe, A. Saraste, S. Lindemann et al., “Cardiomyocyte apoptosis is related to left ventricular dysfunction and remodelling in dilated cardiomyopathy, but is not affected by growth hormone treatment,” European Journal of Heart Failure, vol. 9, no. 2, pp. 160–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Latif, M. A. Khan, E. Birks et al., “Upregulation of the Bcl-2 family of proteins in end stage heart failure,” Journal of the American College of Cardiology, vol. 35, no. 7, pp. 1769–1777, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Kistorp, J. Faber, S. Galatius et al., “Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure,” Circulation, vol. 112, no. 12, pp. 1756–1762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zhang, X.-L. Wang, J. Zhao et al., “Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling,” American Journal of Physiology—Endocrinology and Metabolism, vol. 305, no. 12, pp. E1436–E1443, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Beltrami, N. Finato, M. Rocco et al., “Structural basis of end-stage failure in ischemic cardiomyopathy in humans,” Circulation, vol. 89, no. 1, pp. 151–163, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Cheng, B. Li, J. Kajstura et al., “Stretch-induced programmed myocyte cell death,” The Journal of Clinical Investigation, vol. 96, no. 5, pp. 2247–2259, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. D. S. Herman, L. Lam, M. R. G. Taylor et al., “Truncations of titin causing dilated cardiomyopathy,” The New England Journal of Medicine, vol. 366, no. 7, pp. 619–628, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Moulik, M. Vatta, S. H. Witt et al., “ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene,” Journal of the American College of Cardiology, vol. 54, no. 4, pp. 325–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Duboscq-Bidot, P. Charron, V. Ruppert et al., “Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy,” European Heart Journal, vol. 30, no. 17, pp. 2128–2136, 2009. View at Publisher · View at Google Scholar · View at Scopus