Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 367026, 6 pages
http://dx.doi.org/10.1155/2015/367026
Review Article

Chewing and Attention: A Positive Effect on Sustained Attention

1Research Center for Child Mental Development, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
2Research Program for Carbon Ion Therapy and Diagnostic Imaging Research, Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
3Department of Judo Therapy and Medical Science, Nippon Sport Science University, 7-1-1 Fukuzawa, Setagaya-ku, Tokyo 158-8508, Japan

Received 12 August 2014; Accepted 2 October 2014

Academic Editor: Huayue Chen

Copyright © 2015 Yoshiyuki Hirano and Minoru Onozuka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Abekura, M. Tsuboi, T. Okura, K. Kagawa, S. Sadamori, and Y. Akagawa, “Association between sleep bruxism and stress sensitivity in an experimental psychological stress task,” Biomedical Research, vol. 32, no. 6, pp. 395–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Hicks and P. Conti, “Nocturnal bruxism and self reports of stress-related symptoms,” Perceptual and Motor Skills, vol. 72, no. 3, part 2, p. 1182, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Stewart, R. J. Weyant, M. E. Garcia et al., “Adverse oral health and cognitive decline: the health, aging and body composition study,” Journal of the American Geriatrics Society, vol. 61, no. 2, pp. 177–184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Takata, T. Ansai, I. Soh et al., “Cognitive function and number of teeth in a community-dwelling elderly population without dementia,” Journal of Oral Rehabilitation, vol. 36, no. 11, pp. 808–813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Hirano and M. Onozuka, “Chewing and cognitive function,” Brain and Nerve, vol. 66, no. 1, pp. 25–32, 2014. View at Google Scholar · View at Scopus
  6. H. L. Hollingworth, “Chewing as a technique of relaxation,” Science, vol. 90, no. 2339, pp. 385–387, 1939. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Masumoto, T. Morinushi, H. Kawasaki, and M. Takigawa, “Spectral analysis of changes in electroencephalographic activity after the chewing of gum,” Psychiatry and Clinical Neurosciences, vol. 52, no. 6, pp. 587–592, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Masumoto, T. Morinushi, H. Kawasaki, T. Ogura, and M. Takigawa, “Effects of three principal constituents in chewing gum on electroencephalographic activity,” Psychiatry and Clinical Neurosciences, vol. 53, no. 1, pp. 17–23, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Morinushi, Y. Masumoto, H. Kawasaki, and M. Takigawa, “Effect on electroencephalogram of chewing flavored gum,” Psychiatry and Clinical Neurosciences, vol. 54, no. 6, pp. 645–651, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Wilkinson, A. Scholey, and K. Wesnes, “Chewing gum selectively improves aspects of memory in healthy volunteers,” Appetite, vol. 38, no. 3, pp. 235–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Tucha, L. Mecklinger, K. Maier, M. Hammerl, and K. W. Lange, “Chewing gum differentially affects aspects of attention in healthy subjects,” Appetite, vol. 42, no. 3, pp. 327–329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Hirano, T. Obata, H. Takahashi et al., “Effects of chewing on cognitive processing speed,” Brain and Cognition, vol. 81, no. 3, pp. 376–381, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Hirano, T. Obata, K. Kashikura et al., “Effects of chewing in working memory processing,” Neuroscience Letters, vol. 436, no. 2, pp. 189–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Sakamoto, H. Nakata, Y. Honda, and R. Kakigi, “The effect of mastication on human motor preparation processing: a study with CNV and MRCP,” Neuroscience Research, vol. 64, no. 3, pp. 259–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Sakamoto, H. Nakata, and R. Kakigi, “The effect of mastication on human cognitive processing: a study using event-related potentials,” Clinical Neurophysiology, vol. 120, no. 1, pp. 41–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Smith, “Effects of chewing gum on mood, learning, memory and performance of an intelligence test,” Nutritional Neuroscience, vol. 12, no. 2, pp. 81–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Smith, “Effects of chewing gum on cognitive function, mood and physiology in stressed and non-stressed volunteers,” Nutritional Neuroscience, vol. 13, no. 1, pp. 7–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Smith, “Effects of caffeine in chewing gum on mood and attention,” Human Psychopharmacology, vol. 24, no. 3, pp. 239–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Waterink and A. van Boxtel, “Facial and jaw-elevator EMG activity in relation to changes in performance level during a sustained information processing task,” Biological Psychology, vol. 37, no. 3, pp. 183–198, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Mohri, M. Fumoto, I. Sato-Suzuki, M. Umino, and H. Arita, “Prolonged rhythmic gum chewing suppresses nociceptive response via serotonergic descending inhibitory pathway in humans,” Pain, vol. 118, no. 1-2, pp. 35–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Scholey, C. Haskell, B. Robertson, D. Kennedy, A. Milne, and M. Wetherell, “Chewing gum alleviates negative mood and reduces cortisol during acute laboratory psychological stress,” Physiology & Behavior, vol. 97, no. 3-4, pp. 304–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. E. Spieker, D. Hürlimann, F. Ruschitzka et al., “Mental stress induces prolonged endothelial dysfunction via endothelin—a receptors,” Circulation, vol. 105, no. 24, pp. 2817–2820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Momose, J. Nishikawa, T. Watanabe et al., “Effect of mastication on regional cerebral blood flow in humans examined by positron-emission tomography with 15O-labelled water and magnetic resonance imaging,” Archives of Oral Biology, vol. 42, no. 1, pp. 57–61, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Onozuka, M. Fujita, K. Watanabe et al., “Mapping brain region activity during chewing: a functional magnetic resonance imaging study,” Journal of Dental Research, vol. 81, no. 11, pp. 743–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Johnson, R. Jenks, C. Miles, M. Albert, and M. Cox, “Chewing gum moderates multi-task induced shifts in stress, mood, and alertness. A re-examination,” Appetite, vol. 56, no. 2, pp. 408–411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Sketchley-Kaye, R. Jenks, C. Miles, and A. J. Johnson, “Chewing gum modifies state anxiety and alertness under conditions of social stress,” Nutritional Neuroscience, vol. 14, no. 6, pp. 237–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Fang, J. Li, G. Lu, X. Gong, and D. T. Yew, “A fMRI study of age-related differential cortical patterns during cued motor movement,” Brain Topography, vol. 17, no. 3, pp. 127–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Johnson, M. Muneem, and C. Miles, “Chewing gum benefits sustained attention in the absence of task degradation,” Nutritional Neuroscience, vol. 16, no. 4, pp. 153–159, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Tucha and W. Simpson, “The role of time on task performance in modifying the effects of gum chewing on attention,” Appetite, vol. 56, no. 2, pp. 299–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. U. Tänzer, A. von Fintel, and T. Eikermann, “Chewing gum and concentration performance,” Psychological Reports, vol. 105, no. 2, pp. 372–374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. P. Allen and A. P. Smith, “Effects of chewing gum and time-on-task on alertness and attention,” Nutritional Neuroscience, vol. 15, no. 4, pp. 176–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Morgan, A. J. Johnson, and C. Miles, “Chewing gum moderates the vigilance decrement,” The British Journal of Psychology, vol. 105, no. 2, pp. 214–225, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Lambourne and P. Tomporowski, “The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis,” Brain Research, vol. 1341, pp. 12–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Hasegawa, Y. Tachibana, J. Sakagami, M. Zhang, M. Urade, and T. Ono, “Flavor-enhanced modulation of cerebral blood flow during gum chewing,” PLoS ONE, vol. 8, no. 6, Article ID e66313, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. A. P. Allen, T. J. C. Jacob, and A. P. Smith, “Effects and after-effects of chewing gum on vigilance, heart rate, EEG and mood,” Physiology & Behavior, vol. 133, pp. 244–251, 2014. View at Publisher · View at Google Scholar
  36. M. Kohler, A. Pavy, and C. van den Heuvel, “The effects of chewing versus caffeine on alertness, cognitive performance and cardiac autonomic activity during sleep deprivation,” Journal of Sleep Research, vol. 15, no. 4, pp. 358–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Stephens and R. J. Tunney, “Role of glucose in chewing gum-related facilitation of cognitive function,” Appetite, vol. 43, no. 2, pp. 211–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. P. Allen and A. P. Smith, “Demand characteristics, pre-test attitudes and time-on-task trends in the effects of chewing gum on attention and reported mood in healthy volunteers,” Appetite, vol. 59, no. 2, pp. 349–356, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. M. T. Orne, “On the social psychology of the psychological experiment: with particular reference to demand characteristics and their implications,” The American Psychologist, vol. 17, no. 11, pp. 776–783, 1962. View at Google Scholar
  40. H. Yu, X. Chen, J. Liu, and X. Zhou, “Gum chewing inhibits the sensory processing and the propagation of stress-related information in a brain network,” PLoS ONE, vol. 8, no. 4, Article ID e57111, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. S. V. Onyper, T. L. Carr, J. S. Farrar, and B. R. Floyd, “Cognitive advantages of chewing gum. Now you see them, now you don't,” Appetite, vol. 57, no. 2, pp. 321–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Tucha, W. Simpson, L. Evans et al., “Detrimental effects of gum chewing on vigilance in children with attention deficit hyperactivity disorder,” Appetite, vol. 55, no. 3, pp. 679–684, 2010. View at Publisher · View at Google Scholar · View at Scopus