Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 424308, 6 pages
http://dx.doi.org/10.1155/2015/424308
Review Article

Is It Time to Beta Block the Septic Patient?

1Department of Anaesthesia and Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2GW, UK
2Department of Infection and Inflammation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
3Department of Medicine, University of Cambridge, The Old Schools, Trinity Lane, Cambridge CB2 1TN, UK
4College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Received 13 March 2015; Accepted 18 May 2015

Academic Editor: Elizabeth Papathanassoglou

Copyright © 2015 Philip Pemberton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Morelli, C. Ertmer, M. Westphal et al., “Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial,” The Journal of the American Medical Association, vol. 310, no. 16, pp. 1683–1691, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. I. J. Elenkov, R. L. Wilder, G. P. Chrousos, and E. S. Vizi, “The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system,” Pharmacological Reviews, vol. 52, no. 4, pp. 595–638, 2000. View at Google Scholar · View at Scopus
  3. A. Rudiger and M. Singer, “Mechanisms of sepsis-induced cardiac dysfunction,” Critical Care Medicine, vol. 35, pp. 1599–1608, 2007. View at Publisher · View at Google Scholar
  4. K. Muthu, J. Deng, F. Romano et al., “Thermal injury and sepsis modulates beta-adrenergic receptors and cAMP responses in monocyte-committed bone marrow cells,” Journal of Neuroimmunology, vol. 165, no. 1-2, pp. 129–138, 2005. View at Google Scholar
  5. M. J. Cohen, R. Shankar, J. Stevenson, R. Fernandez, R. L. Gamelli, and S. B. Jones, “Bone marrow norepinephrine mediates development of functionally different macrophages after thermal injury and sepsis,” Annals of Surgery, vol. 240, no. 1, pp. 132–141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Rudiger, “Beta-block the septic heart,” Critical Care Medicine, vol. 38, no. 10, pp. S608–S612, 2010. View at Publisher · View at Google Scholar
  7. D. Annane, E. Bellissant, and J. Cavaillon, “Septic shock,” The Lancet, vol. 365, no. 9453, pp. 63–78, 2005. View at Publisher · View at Google Scholar
  8. C. R. Benedict and J. A. Rose, “Arterial norepinephrine changes in patients with septic shock,” Circulatory Shock, vol. 38, no. 3, pp. 165–172, 1992. View at Google Scholar · View at Scopus
  9. R. P. Dellinger, M. M. Levy, A. Rhodes et al., “Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Medicine, vol. 39, no. 2, pp. 165–228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Singer, “Catecholamine treatment for shock—equally good or bad?” The Lancet, vol. 370, no. 9588, pp. 636–637, 2007. View at Publisher · View at Google Scholar
  11. C. H. Lang, “Sepsis-induced insulin resistance in rats is mediated by a β-adrenergic mechanism,” The American Journal of Physiology: Endocrinology and Metabolism, vol. 263, no. 4, pp. E703–E711, 1992. View at Google Scholar · View at Scopus
  12. D. M. Hargrove, G. J. Bagby, C. H. Lang, and J. J. Spitzer, “Adrenergic blockade prevents endotoxin-induced increases in glucose metabolism,” American Journal of Physiology, vol. 255, no. 5, part 1, pp. E629–E635, 1988. View at Google Scholar
  13. M. M. Parker, J. H. Shelhamer, C. Natanson, D. W. Alling, and J. E. Parrillo, “Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis,” Critical Care Medicine, vol. 15, no. 10, pp. 923–929, 1987. View at Publisher · View at Google Scholar · View at Scopus
  14. D. G. Evans, A. A. Miles, and J. S. Niven, “The enhancement of bacterial infections by adrenaline,” British Journal of Experimental Pathology, vol. 29, no. 1, pp. 20–39, 1948. View at Google Scholar · View at Scopus
  15. M. Lyte, P. P. E. Freestone, C. P. Neal et al., “Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes,” The Lancet, vol. 361, no. 9352, pp. 130–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. P. P. E. Freestone, R. D. Haigh, and M. Lyte, “Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica,” FEMS Microbiology Letters, vol. 269, no. 2, pp. 221–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. P. E. Freestone, M. Lyte, C. P. Neal, A. F. Maggs, R. D. Haigh, and P. H. Williams, “The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin,” Journal of Bacteriology, vol. 182, no. 21, pp. 6091–6098, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Y. Hahn, P. Wang, S. M. Tait, Z. F. Ba, S. S. Reich, and I. H. Chaudry, “Sustained elevation in circulating catecholamine levels during polymicrobial sepsis,” Shock, vol. 4, no. 4, pp. 269–273, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Boldt, T. Menges, D. Kuhn, C. Diridis, and G. Hempelmann, “Alterations in circulating vasoactive substances in the critically ill—a comparison between survivors and non-survivors,” Intensive Care Medicine, vol. 21, no. 3, pp. 218–225, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. M. W. Dünser and W. R. Hasibeder, “Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress,” Journal of Intensive Care Medicine, vol. 24, no. 5, pp. 293–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Schmittinger, C. Torgersen, G. Luckner, D. C. H. Schröder, I. Lorenz, and M. W. Dünser, “Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study,” Intensive Care Medicine, vol. 38, no. 6, pp. 950–958, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Sander, I. D. Welters, P. Foëx, and J. W. Sear, “Impact of prolonged elevated heart rate on incidence of major cardiac events in critically ill patients with a high risk of cardiac complications,” Critical Care Medicine, vol. 33, no. 1, pp. 81–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Berk, J. F. Hagen, W. H. Beyer, M. J. Gerber, and G. R. Dochat, “The treatment of endotoxin shock by beta adrenergic blockade,” Annals of Surgery, vol. 169, no. 1, pp. 74–81, 1969. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Suzuki, H. Morisaki, R. Serita et al., “Infusion of the β-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rat,” Critical Care Medicine, vol. 33, no. 10, pp. 2294–2301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Aboab, V. Sebille, M. Jourdain et al., “Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock,” Intensive Care Medicine, vol. 37, no. 8, pp. 1344–1351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Ibrahim-Zada, P. Rhee, C. T. Gomez, J. Weller, and R. S. Friese, “Inhibition of sepsis-induced inflammatory response by β1-adrenergic antagonists,” Journal of Trauma and Acute Care Surgery, vol. 76, no. 2, pp. 320–328, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Hagiwara, H. Iwasaka, H. Maeda, and T. Noguchi, “Landiolol, an ultrashort-acting β1-adrenoceptor antagonist, has protective effects in an lps-induced systemic inflammation model,” Shock, vol. 31, no. 5, pp. 515–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. L. Ackland, S. T. Yao, A. Rudiger et al., “Cardioprotection, attenuated systemic inflammation, and survival benefit of β1-adrenoceptor blockade in severe sepsis in rats,” Critical Care Medicine, vol. 38, no. 2, pp. 388–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Calzavacca, Y. R. Lankadeva, S. R. Bailey, M. Bailey, R. Bellomo, and C. N. May, “Effects of selective beta1-adrenoceptor blockade on cardiovascular and renal function and circulating cytokines in ovine hyperdynamic sepsis,” Critical Care, vol. 18, article 610, 2014. View at Publisher · View at Google Scholar
  30. M. Weiss, E. M. Schneider, J. Tarnow et al., “Is inhibition of oxygen radical production of neutrophils by sympathomimetics mediated via beta-2 adrenoceptors?” Journal of Pharmacology and Experimental Therapeutics, vol. 278, no. 3, pp. 1105–1113, 1996. View at Google Scholar · View at Scopus
  31. A. Severn, N. T. Rapson, C. A. Hunter, and F. Y. Liew, “Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists,” The Journal of Immunology, vol. 148, no. 11, pp. 3441–3445, 1992. View at Google Scholar · View at Scopus
  32. K. Muthu, J. Deng, R. Gamelli, R. Shankar, and S. B. Jones, “Adrenergic modulation of cytokine release in bone marrow progenitor-derived macrophage following polymicrobial sepsis,” Journal of Neuroimmunology, vol. 158, no. 1-2, pp. 50–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Deng, K. Muthu, R. Gamelli, R. Shankar, and S. B. Jones, “Adrenergic modulation of splenic macrophage cytokine release in polymicrobial sepsis,” The American Journal of Physiology—Cell Physiology, vol. 287, no. 3, pp. C730–C736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Schmitz, K. Wilsenack, S. Lendemanns, M. Schedlowski, and R. Oberbeck, “β-Adrenergic blockade during systemic inflammation: impact on cellular immune functions and survival in a murine model of sepsis,” Resuscitation, vol. 72, no. 2, pp. 286–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. H. Lang, G. Nystrom, and R. A. Frost, “Beta-adrenergic blockade exacerbates sepsis-induced changes in tumor necrosis factor alpha and interleukin-6 in skeletal muscle and is associated with impaired translation initiation,” The Journal of Trauma, vol. 64, no. 2, pp. 477–486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Oberbeck, D. Schmitz, K. Wilsenack et al., “Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis,” NeuroImmunoModulation, vol. 11, no. 4, pp. 214–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. D. Bland, W. C. Shoemaker, E. Abraham, and J. C. Cobo, “Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients,” Critical Care Medicine, vol. 13, no. 2, pp. 85–90, 1985. View at Publisher · View at Google Scholar · View at Scopus
  38. W. C. Shoemaker, P. L. Appel, H. B. Kram, K. Waxman, and T.-S. Lee, “Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients,” Chest, vol. 94, no. 6, pp. 1176–1186, 1988. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Rivers, B. Nguyen, S. Havstad et al., “Early goal-directed therapy in the treatment of severe sepsis and septic shock,” The New England Journal of Medicine, vol. 345, no. 19, pp. 1368–1377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Hayes, A. C. Timmins, E. H. S. Yau, M. Palazzo, C. J. Hinds, and D. Watson, “Elevation of systemic oxygen delivery in the treatment of critically ill patients,” The New England Journal of Medicine, vol. 330, no. 24, pp. 1717–1722, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. M. I. Rudis, M. A. Basha, and B. J. Zarowitz, “Is it time to reposition vasopressors and inotropes in sepsis?” Critical Care Medicine, vol. 24, no. 3, pp. 525–537, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Havel, J. Arrich, H. Losert, G. Gamper, M. Müllner, and H. Herkner, “Vasopressors for hypotensive shock,” Cochrane Database of Systematic Reviews, vol. 5, Article ID CD003709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Gates, G. D. Perkins, S. E. Lamb et al., “Beta-Agonist Lung injury TrIal-2 (BALTI-2): a multicentre, randomised, double-blind, placebo-controlled trial and economic evaluation of intravenous infusion of salbutamol versus placebo in patients with acute respiratory distress syndrome,” Health Technology Assessment, vol. 17, no. 38, pp. 1–87, 2013. View at Publisher · View at Google Scholar
  44. J. A. Russell, K. R. Walley, J. Singer et al., “Vasopressin versus norepinephrine infusion in patients with septic shock,” The New England Journal of Medicine, vol. 358, no. 9, pp. 877–887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. R. Bristow, R. Ginsburg, V. Umans et al., “Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure,” Circulation Research, vol. 59, no. 3, pp. 297–309, 1986. View at Publisher · View at Google Scholar · View at Scopus
  46. D. B. Barnett, “Myocardial β-adrenoceptor function and regulation in heart failure: implications for therapy,” British Journal of Clinical Pharmacology, vol. 27, no. 5, pp. 527–537, 1989. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Annane, F. Trabold, T. Sharshar et al., “Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 2, pp. 458–465, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. F. J. Romero-Bermejo, M. Ruiz-Bailen, J. Gil-Cebrian, and M. J. Huertos-Ranchal, “Sepsis-induced cardiomyopathy,” Current Cardiology Reviews, vol. 7, no. 3, pp. 163–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Y. Sum, A. Yacobi, R. Kartzinel, H. Stampfli, C. S. Davis, and C.-M. Lai, “Kinetics of esmolol, an ultra-short-acting beta blocker, and of its major metabolite,” Clinical Pharmacology and Therapeutics, vol. 34, no. 4, pp. 427–434, 1983. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Iguchi, H. Iwamura, M. Nishizaki et al., “Development of a highly cardioselective ultra short-acting β-blocker, ONO-1101,” Chemical and Pharmaceutical Bulletin, vol. 40, no. 6, pp. 1462–1469, 1992. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Tsuchiya and M. Mizogami, “Characteristic interactivity of landiolol, an ultra-short-acting highly selective β1-blocker, with biomimetic membranes: comparisons with β1-selective esmolol and non-selective propranolol and alprenolol,” Frontiers in Pharmacology, Article ID Article 150, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Smith and M. Teitler, “Beta-blocker selectivity at cloned human beta1- and beta2-adrenergic receptors,” Cardiovascular Drugs and Therapy, vol. 13, no. 2, pp. 123–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Ohtsuka, M. Hamada, G. Hiasa et al., “Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 37, no. 2, pp. 412–417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. R. S. Friese, R. Barber, D. McBride, J. Bender, and L. M. Gentilello, “Could beta blockade improve outcome after injury by modulating inflammatory profiles?” Journal of Trauma, vol. 64, no. 4, pp. 1061–1068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Tian, L. Zhang, Y. Hou et al., “Effects of cAMP and β-adrenergic receptor antagonists on the function of peripheral T helper lymphocytes in patients with heart failure,” NeuroImmunoModulation, vol. 18, no. 2, pp. 73–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Bergmann, A. Gornikiewicz, T. Sautner et al., “Attenuation of catecholamine-induced immunosuppression in whole blood from patients with sepsis,” Shock, vol. 12, no. 6, pp. 421–427, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Christensen, M. B. Johansen, E. Tønnesen et al., “Preadmission beta-blocker use and 30-day mortality among patients in intensive care: a cohort study,” Critical Care, vol. 15, no. 2, article R87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. D. N. Herndon, D. W. Hart, S. E. Wolf, D. L. Chinkes, and R. R. Wolfe, “Reversal of catabolism by beta-blockade after severe burns,” The New England Journal of Medicine, vol. 345, no. 17, pp. 1223–1229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. D. N. Herndon, N. A. Rodriguez, E. C. Diaz et al., “Long-term propranolol use in severely burned pediatric patients: A randomized controlled study,” Annals of Surgery, vol. 256, no. 3, pp. 402–411, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Arbabi, E. M. Campion, M. R. Hemmila et al., “Beta-blocker use is associated with improved outcomes in adult trauma patients,” Journal of Trauma, vol. 62, no. 1, pp. 56–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Balik, J. Rulisek, P. Leden et al., “Concomitant use of beta-1 adrenoreceptor blocker and norepinephrine in patients with septic shock,” Wiener Klinische Wochenschrift, vol. 124, no. 15-16, pp. 552–556, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Morelli, A. Donati, C. Ertmer et al., “Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study,” Critical Care Medicine, vol. 41, no. 9, pp. 2162–2168, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. J.-X. Chen, J. Sun, Y.-Y. Liu, and B.-H. Jia, “Effects of adrenergic beta-1 antagonists on hemodynamics of severe septic patients,” Zhonghua Yi Xue Za Zhi, vol. 93, no. 16, pp. 1243–1246, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Yang, Z. Liu, W. Yang et al., “Effects of the beta-blockers on cardiac protection and hemodynamics in patients with septic shock: a prospective study,” Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, vol. 26, pp. 714–717, 2014. View at Publisher · View at Google Scholar