Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 783538, 13 pages
http://dx.doi.org/10.1155/2015/783538
Research Article

Paricalcitol Inhibits Aldosterone-Induced Proinflammatory Factors by Modulating Epidermal Growth Factor Receptor Pathway in Cultured Tubular Epithelial Cells

1Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jimenez Diaz, Universidad Autónoma Madrid (UAM), 28040 Madrid, Spain
2REDINREN, Madrid, Spain
3Department of Experimental Nephrology, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
4Dialysis Unit, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
5Institute of Renal Research Queen Sophia (IRSIN), Spain
6Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
7Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain

Received 31 October 2014; Accepted 11 January 2015

Academic Editor: Luca De Nicola

Copyright © 2015 Jose L. Morgado-Pascual et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Valdivielso, J. Cannata-Andía, B. Coll, and E. Fernández, “A new role for vitamin D receptor activation in chronic kidney disease,” The American Journal of Physiology—Renal Physiology, vol. 297, no. 6, pp. F1502–F1509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Levin, G. L. Bakris, M. Molitch et al., “Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease,” Kidney International, vol. 71, no. 1, pp. 31–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. V. Pérez-Gómez, A. Ortiz-Arduán, and V. Lorenzo-Sellares, “Vitamin D and proteinuria: a critical review of molecular bases and clinical experience,” Nefrologia, vol. 33, no. 5, pp. 716–726, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Gonzalez-Parra, J. Rojas-Rivera, J. Tuñón, M. Praga, A. Ortiz, and J. Egido, “Vitamin D receptor activation and cardiovascular disease,” Nephrology Dialysis Transplantation, vol. 27, supplement 4, pp. iv17–iv21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Bodyak, J. C. Ayus, S. Achinger et al., “Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 16810–16815, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Mizobuchi, J. Morrissey, J. L. Finch et al., “Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats,” Journal of the American Society of Nephrology, vol. 18, no. 6, pp. 1796–1806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kuhlmann, C. S. Haas, M.-L. Gross et al., “1,25-Dihydroxyvitamin D3 decreases podocyte loss and podocyte hypertrophy in the subtotally nephrectomized rat,” The American Journal of Physiology—Renal Physiology, vol. 286, no. 3, pp. F526–F533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Panichi, M. Migliori, D. Taccola et al., “Effects of 1,25(OH)2D3 in experimental mesangial proliferative nephritis in rats,” Kidney International, vol. 60, no. 1, pp. 87–95, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Tan, Y. Li, and Y. Liu, “Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy,” Journal of the American Society of Nephrology, vol. 17, no. 12, pp. 3382–3393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hirata, K. Makibayashi, K. Katsumata et al., “22-Oxacalcitriol prevents progressive glomerulosclerosis without adversely affecting calcium and phosphorus metabolism in subtotally nephrectomized rats,” Nephrology Dialysis Transplantation, vol. 17, no. 12, pp. 2132–2137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ruiz-Ortega, V. Esteban, M. Rupérez et al., “Renal and vascular hypertension-induced inflammation: role of angiotensin II,” Current Opinion in Nephrology and Hypertension, vol. 15, no. 2, pp. 159–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Thomas, R. Dooley, and B. J. Harvey, “Aldosterone as a renal growth factor,” Steroids, vol. 75, no. 8-9, pp. 550–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Marney and N. J. Brown, “Aldosterone and end-organ damage,” Clinical Science, vol. 113, no. 5-6, pp. 267–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Briet and E. L. Schiffrin, “Vascular actions of aldosterone,” Journal of Vascular Research, vol. 50, no. 2, pp. 89–99, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Remuzzi, D. Cattaneo, and N. Perico, “The aggravating mechanisms of aldosterone on kidney fibrosis,” Journal of the American Society of Nephrology, vol. 19, no. 8, pp. 1459–1462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. H. de Borst, M. G. Vervloet, P. M. ter Wee, and G. Navis, “Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease,” Journal of the American Society of Nephrology, vol. 22, no. 9, pp. 1603–1609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. C. Li, J. Kong, M. Wei, Z.-F. Chen, S. Q. Liu, and L.-P. Cao, “1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system,” The Journal of Clinical Investigation, vol. 110, no. 2, pp. 229–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Xiong, J. Gong, Y. Liu, R. Xiang, and X. Tan, “Loss of vitamin D receptor in chronic kidney disease: a potential mechanism linking inflammation to epithelial-to-mesenchymal transition,” American Journal of Physiology—Renal Physiology, vol. 303, no. 7, pp. F1107–F1115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Terzi, M. Burtin, M. Hekmati et al., “Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury,” The Journal of Clinical Investigation, vol. 106, no. 2, pp. 225–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Lautrette, S. Li, R. Alili et al., “Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach,” Nature Medicine, vol. 11, no. 8, pp. 867–874, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Dreymueller, J. Pruessmeyer, E. Groth, and A. Ludwig, “The role of ADAM-mediated shedding in vascular biology,” European Journal of Cell Biology, vol. 91, no. 6-7, pp. 472–485, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Ohtsu, P. J. Dempsey, and S. Eguchi, “ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors,” American Journal of Physiology—Cell Physiology, vol. 291, no. 1, pp. C1–C10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. P. Blobel, “ADAMs: key components in egfr signalling and development,” Nature Reviews Molecular Cell Biology, vol. 6, no. 1, pp. 32–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Le Gall, P. Bobé, K. Reiss et al., “ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor α, L-selectin, and tumor necrosis factor α,” Molecular Biology of the Cell, vol. 20, no. 6, pp. 1785–1794, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Dreymueller, C. Martin, J. Schumacher et al., “Smooth muscle cells relay acute pulmonary inflammation via distinct ADAM17/ErbB axes,” The Journal of Immunology, vol. 192, no. 2, pp. 722–731, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. J. R. Doedens, R. M. Mahimkar, and R. A. Black, “TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation,” Biochemical and Biophysical Research Communications, vol. 308, no. 2, pp. 331–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. W. Gee and J. M. Knowlden, “ADAM metalloproteases and EGFR signalling,” Breast Cancer Research, vol. 5, no. 5, pp. 223–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. G. M. Argast, J. S. Campbell, J. T. Brooling, and N. Fausto, “Epidermal growth factor receptor transactivation mediates tumor necrosis factor-induced hepatocyte replication,” The Journal of Biological Chemistry, vol. 279, no. 33, pp. 34530–34536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Prenzel, E. Zwick, H. Daub et al., “EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF,” Nature, vol. 402, no. 6764, pp. 884–888, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Higuchi, H. Ohtsu, H. Suzuki, H. Shirai, G. D. Frank, and S. Eguchi, “Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology,” Clinical Science, vol. 112, no. 7-8, pp. 417–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Huang, A. Zhang, G. Ding, and R. Chen, “Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation,” American Journal of Physiology—Renal Physiology, vol. 296, no. 6, pp. F1323–F1333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Rayego-Mateos, J. L. Morgado-Pascual, A. B. Sanz et al., “TWEAK transactivation of the epidermal growth factor receptor mediates renal inflammation,” The Journal of Pathology, vol. 231, no. 4, pp. 480–494, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Chiu, C. Santiskulvong, and E. Rozengurt, “EGF receptor transactivation mediates ANG II-stimulated mitogenesis in intestinal epithelial cells through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 288, no. 2, pp. G182–G194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. W. B. Melenhorst, L. Visser, A. Timmer, M. C. van den Heuvel, C. A. Stegeman, and H. van Goor, “ADAM17 upregulation in human renal disease: a role in modulating TGF-α availability?” American Journal of Physiology—Renal Physiology, vol. 297, no. 3, pp. F781–F790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Briet and E. L. Schiffrin, “Aldosterone: effects on the kidney and cardiovascular system,” Nature Reviews Nephrology, vol. 6, no. 5, pp. 261–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. M. Siragy and C. Xue, “Local renal aldosterone production induces inflammation and matrix formation in kidneys of diabetic rats,” Experimental Physiology, vol. 93, no. 7, pp. 817–824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Ohtsu, P. J. Dempsey, G. D. Frank et al., “ADAM17 mediates epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. e133–e137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Dreymueller, C. Martin, T. Kogel et al., “Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide,” EMBO Molecular Medicine, vol. 4, no. 5, pp. 412–423, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Odenbach, X. Wang, S. Cooper et al., “MMP-2 mediates angiotensin ii-induced hypertension under the transcriptional control of MMP-7 and TACE,” Hypertension, vol. 57, no. 1, pp. 123–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Serino, R. Menghini, L. Fiorentino et al., “Mice heterozygous for tumor necrosis factor-α converting enzyme are protected from obesity-induced insulin resistance and diabetes,” Diabetes, vol. 56, no. 10, pp. 2541–2546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. W. B. W. H. Melenhorst, G. M. Mulder, Q. Xi et al., “Epidermal growth factor receptor signaling in the kidney: key roles in physiology and disease,” Hypertension, vol. 52, no. 6, pp. 987–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Beck Gooz, E. N. Maldonado, Y. Dang et al., “ADAM17 promotes proliferation of collecting duct kidney epithelial cells through ERK activation and increased glycolysis in polycystic kidney disease,” The American Journal of Physiology—Renal Physiology, vol. 307, no. 5, pp. F551–F559, 2014. View at Publisher · View at Google Scholar
  43. S. Rayego-Mateos, R. Rodrigues-Díez, J. L. Morgado-Pascual et al., “Connective tissue growth factor is a new ligand of epidermal growth factor receptor,” Journal of Molecular Cell Biology, vol. 5, no. 5, pp. 323–335, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Laouari, M. Burtin, A. Phelep et al., “TGF-α mediates genetic susceptibility to chronic kidney disease,” Journal of the American Society of Nephrology, vol. 22, no. 2, pp. 327–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Bollée, M. Flamant, S. Schordan et al., “Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis,” Nature Medicine, vol. 17, no. 10, pp. 1242–1250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Obama, T. Takayanagi, T. Kobayashi et al., “Vascular induction of a disintegrin and metalloprotease 17 by angiotensin II through hypoxia inducible factor 1α,” The American Journal of Hypertension, vol. 28, no. 1, pp. 10–14, 2015. View at Publisher · View at Google Scholar
  47. P. E. Morange, D. A. Tregouet, T. Godefroy et al., “Polymorphisms of the TNF and the TACE/ADAM17 genes in relation to cardiovascular mortality: the AtheroGene study,” Journal of Molecular Medicine, vol. 86, no. 10, pp. 1153–1161, 2008. View at Publisher · View at Google Scholar
  48. J. Chen, J.-K. Chen, E. G. Neilson, and R. C. Harris, “Role of EGF receptor activation in angiotensin II-induced renal epithelial cell hypertrophy,” Journal of the American Society of Nephrology, vol. 17, no. 6, pp. 1615–1623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. V. C. De Giusti, M. B. Nolly, A. M. Yeves et al., “Aldosterone stimulates the cardiac Na+/H+ exchanger via transactivation of the epidermal growth factor receptor,” Hypertension, vol. 58, no. 5, pp. 912–919, 2011. View at Publisher · View at Google Scholar
  50. K. J. Elliott, A. M. Bourne, T. Takayanagi et al., “ADAM17 silencing by adenovirus encoding miRNA-embedded siRNA revealed essential signal transduction by angiotensin II in vascular smooth muscle cells,” Journal of Molecular and Cellular Cardiology, vol. 62, pp. 1–7, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Wu and J. Sun, “Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection,” Discovery Medicine, vol. 11, no. 59, pp. 325–335, 2011. View at Google Scholar · View at Scopus
  52. E. S. Chambers and C. M. Hawrylowicz, “The impact of vitamin D on regulatory T cells,” Current Allergy and Asthma Reports, vol. 11, no. 1, pp. 29–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. G. T. González-Mateo, V. Fernández-Míllara, T. Bellón et al., “Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction in IL-17 production,” PLoS ONE, vol. 9, no. 10, Article ID e108477, 2014. View at Publisher · View at Google Scholar
  54. Y. Zhang, D. Y. M. Leung, B. N. Richers et al., “Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1,” The Journal of Immunology, vol. 188, no. 5, pp. 2127–2135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. P. M. Petkovich, J. L. Wrana, A. E. Grigoriadis, J. N. Heersche, and J. Sodek, “1,25-Dihydroxyvitamin D3 increases epidermal growth factor receptors and transforming growth factor β-like activity in a bone-derived cell line,” The Journal of Biological Chemistry, vol. 262, no. 28, pp. 13424–13428, 1987. View at Google Scholar · View at Scopus
  56. O. Garach-Jehoshua, A. Ravid, U. A. Liberman, and R. Koren, “1,25-Dihydroxyvitamin D3 increases the growth-promoting activity of autocrine epidermal growth factor receptor ligands in keratinocytes,” Endocrinology, vol. 140, no. 2, pp. 713–721, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. W.-M. Tong, H. Hofer, A. Ellinger, M. Peterlik, and H. S. Cross, “Mechanism of antimitogenic action of vitamin D in human colon carcinoma cells: relevance for suppression of epidermal growth factor-stimulated cell growth,” Oncology Research, vol. 11, no. 2, pp. 77–84, 1999. View at Google Scholar · View at Scopus
  58. M. Koga, J. A. Eisman, and R. L. Sutherland, “Regulation of epidermal growth factor receptor levels by 1,25-dihydroxyvitamin D3 in human breast cancer cells,” Cancer Research, vol. 48, no. 10, pp. 2734–2739, 1988. View at Google Scholar · View at Scopus
  59. E. A. González, S. Disthabanchong, R. Kowalewski, and K. J. Martin, “Mechanisms of the regulation of EGF receptor gene expression by calcitriol and parathyroid hormone in UMR 106-01 cells,” Kidney International, vol. 61, no. 5, pp. 1627–1634, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. B. Cordero, M. Cozzolino, Y. Lu et al., “1,25-Dihydroxyvitamin D down-regulates cell membrane growth- and nuclear growth-promoting signals by the epidermal growth factor receptor,” The Journal of Biological Chemistry, vol. 277, no. 41, pp. 38965–38971, 2002. View at Publisher · View at Google Scholar · View at Scopus