Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 835934, 17 pages
http://dx.doi.org/10.1155/2015/835934
Review Article

Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives

1Department of Pathobiology and Medical Biotechnologies, University of Palermo, 90134 Palermo, Italy
2Unit of Cardiac Surgery, Department of Surgery and Oncology, University of Palermo, 90134 Palermo, Italy
3Department of General and Specialist Surgery, University of Rome “Sapienza”, 00161 Rome, Italy

Received 19 March 2015; Revised 19 June 2015; Accepted 15 July 2015

Academic Editor: Sebastiano Sciarretta

Copyright © 2015 Carmela R. Balistreri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. North and D. A. Sinclair, “The intersection between aging and cardiovascular disease,” Circulation Research, vol. 110, no. 8, pp. 1097–1108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D. Edwards, “Population aging, the dependency burden, and challenges facing preventive medicine,” Preventive Medicine, vol. 55, no. 6, pp. 533–534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Heidenreich, J. G. Trogdon, O. A. Khavjou et al., “Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association,” Circulation, vol. 123, no. 8, pp. 933–944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. H. Opie and A. J. Dalby, “Cardiovascular prevention: lifestyle and statins—competitors or companions?” South African Medical Journal, vol. 104, no. 3, pp. 168–173, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Mozaffarian, E. J. Benjamin, A. S. Go et al., “Heart disease and stroke statistics—2015 update: a report from the American Heart Association,” Circulation, vol. 131, no. 4, pp. e29–e322, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. Institute of Medicine, “Committee on preventing the global epidemic of cardiovascular disease: meeting the challenges in developing countries,” in Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health, V. Fuster and B. B. Kelly, Eds., National Academies Press, Washington, DC, USA, 2010. View at Google Scholar
  7. B. J. Gersh, R. D. Simari, A. Behfar, C. M. Terzic, and A. Terzic, “Cardiac cell repair therapy: a clinical perspective,” Mayo Clinic Proceedings, vol. 84, no. 10, pp. 876–892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Sadahiro, S. Yamanaka, and M. Ieda, “Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications,” Circulation Research, vol. 116, no. 8, pp. 1378–1391, 2015. View at Publisher · View at Google Scholar
  9. P. J. Goldschmidt-Clermont, C. Dong, D. M. Seo, and O. C. Velazquez, “Atherosclerosis, inflammation, genetics, and stem cells: 2012 update,” Current Atherosclerosis Reports, vol. 14, no. 3, pp. 201–210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. F. H. Cheema, G. Polvani, M. Argenziano, and M. Pesce, “Combining stem cells and tissue engineering in cardiovascular repair—a step forward to derivation of novel implants with enhanced function and self-renewal characteristics,” Recent Patents on Cardiovascular Drug Discovery, vol. 7, no. 1, pp. 10–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Goichberg, J. Chang, R. Liao, and A. Leri, “Cardiac stem cells: biology and clinical applications,” Antioxidants & Redox Signaling, vol. 21, no. 14, pp. 2002–2017, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Resch, A. Pircher, C. M. Kähler, J. Pratschke, and W. Hilbe, “Endothelial progenitor cells: current issues on characterization and challenging clinical applications,” Stem Cell Reviews, vol. 8, no. 3, pp. 926–939, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Urbich and S. Dimmeler, “Endothelial progenitor cells: functional characterization,” Trends in Cardiovascular Medicine, vol. 14, no. 8, pp. 318–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Pelosi, G. Castelli, and U. Testa, “Endothelial progenitors,” Blood Cells, Molecules, & Diseases, vol. 52, no. 4, pp. 186–194, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Wojakowski, U. Landmesser, R. Bachowski, T. Jadczyk, and M. Tendera, “Mobilization of stem and progenitor cells in cardiovascular diseases,” Leukemia, vol. 26, no. 1, pp. 23–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Schmeisser, C. D. Garlichs, H. Zhang et al., “Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions,” Cardiovascular Research, vol. 49, no. 3, pp. 671–680, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Watt, F. Gullo, M. van der Garde et al., “The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential,” British Medical Bulletin, vol. 108, no. 1, pp. 25–53, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. F.-J. Lv, R. S. Tuan, K. M. C. Cheung, and V. Y. L. Leung, “Concise review: the surface markers and identity of human mesenchymal stem cells,” Stem Cells, vol. 32, no. 6, pp. 1408–1419, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. I. R. Murray, C. C. West, W. R. Hardy et al., “Natural history of mesenchymal stem cells, from vessel walls to culture vessels,” Cellular and Molecular Life Sciences, vol. 71, no. 8, pp. 1353–1374, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. D.-W. Li, Z.-Q. Liu, J. Wei, Y. Liu, and L.-S. Hu, “Contribution of endothelial progenitor cells to neovascularization (review),” International Journal of Molecular Medicine, vol. 30, no. 5, pp. 1000–1006, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Hoenig, C. Bianchi, and F. W. Sellke, “Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis,” Current Drug Targets, vol. 9, no. 5, pp. 422–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. A. Gallagher, Z.-J. Liu, M. Xiao et al., “Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α,” The Journal of Clinical Investigation, vol. 117, no. 5, pp. 1249–1259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. J. Povsic, S. S. Najjar, K. Prather et al., “EPC mobilization after erythropoietin treatment in acute ST-elevation myocardial infarction: the REVEAL EPC substudy,” Journal of Thrombosis and Thrombolysis, vol. 36, no. 4, pp. 375–383, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Ito, I. I. Rovira, M. L. Bloom et al., “Endothelial progenitor cells as putative targets for angiostatin,” Cancer Research, vol. 59, no. 23, pp. 5875–5877, 1999. View at Google Scholar · View at Scopus
  26. K. Williamson, S. E. Stringer, and M. Y. Alexander, “Endothelial progenitor cells enter the aging arena,” Frontiers in Physiology, vol. 3, article 30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Felice, M. C. Barsotti, P. Poredos, A. Balbarini, and R. Di Stefano, “Effect of aging on metabolic pathways in endothelial progenitor cells,” Current Pharmaceutical Design, vol. 19, no. 13, pp. 2351–2365, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. C.-P. Lin, F.-Y. Lin, P.-H. Huang et al., “Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation,” BioMed Research International, vol. 2013, Article ID 845037, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. B. K. Rodiño-Janeiro, B. Paradela-Dobarro, M. I. Castiñeiras-Landeira, S. Raposeiras-Roubín, J. R. González-Juanatey, and E. Álvarez, “Current status of NADPH oxidase research in cardiovascular pharmacology,” Vascular Health and Risk Management, vol. 9, no. 1, pp. 401–428, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Werner and G. Nickenig, “Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 257–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. C. de Ciuceis, A. Pilu, C. Cappelli et al., “Decreased number of circulating endothelial progenitor cells in patients with Graves' hyperthyroidism,” Journal of Endocrinological Investigation, vol. 34, no. 5, pp. 335–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. A. Shakoor, A. Aldibbiat, L. E. Ingoe et al., “Endothelial progenitor cells in subclinical hypothyroidism: the effect of thyroid hormone replacement therapy,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 1, pp. 319–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. P. Fadini, S. de Kreutzenberg, M. Albiero et al., “Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 997–1004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Sugawara, M. Mitsui-Saito, T. Hoshiai, C. Hayashi, Y. Kimura, and K. Okamura, “Circulating endothelial progenitor cells during human pregnancy,” The Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 3, pp. 1845–1848, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. P. S. Lee and K. K. Poh, “Endothelial progenitor cells in cardiovascular diseases,” World Journal of Stem Cells, vol. 6, no. 3, pp. 355–366, 2014. View at Publisher · View at Google Scholar
  36. J. M. Fernández, D. Rosado-Álvarez, M. E. da Silva Grigoletto et al., “Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome,” Clinical Science, vol. 123, no. 6, pp. 361–373, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Marin, R. Ramirez, J. Delgado-Lista et al., “Mediterranean diet reduces endothelial damage and improves the regenerative capacity of endothelium,” The American Journal of Clinical Nutrition, vol. 93, no. 2, pp. 267–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. W. C. Aird, “Endothelium in health and disease,” Pharmacological Reports, vol. 60, no. 1, pp. 139–143, 2008. View at Google Scholar · View at Scopus
  39. S. H. van Ierssel, P. G. Jorens, E. M. van Craenenbroeck, and V. M. Conraads, “The endothelium, a protagonist in the pathophysiology of critical illness: focus on cellular markers,” BioMed Research International, vol. 2014, Article ID 985813, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Favero, C. Paganelli, B. Buffoli, L. F. Rodella, and R. Rezzani, “Endothelium and its alterations in cardiovascular diseases: life style intervention,” BioMed Research International, vol. 2014, Article ID 801896, 28 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Shantsila, T. Watson, and G. Y. H. Lip, “Endothelial progenitor cells in cardiovascular disorders,” Journal of the American College of Cardiology, vol. 49, no. 7, pp. 741–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. F. J. King and J. H. McDermott, “Endothelial progenitor cells and cardiovascular disease,” Journal of Stem Cells, vol. 9, no. 2, pp. 93–106, 2014. View at Google Scholar · View at Scopus
  43. S. Obi, K. Yamamoto, and J. Ando, “Effects of shear stress on endothelial progenitor cells,” Journal of Biomedical Nanotechnology, vol. 10, no. 10, pp. 2586–2597, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Ma, A. Morancho, J. Montaner, and A. Rosell, “Endothelial progenitor cells and revascularization following stroke,” Brain Research, 2015. View at Publisher · View at Google Scholar
  45. J. M. Hill, G. Zalos, J. P. J. Halcox et al., “Circulating endothelial progenitor cells, vascular function, and cardiovascular risk,” The New England Journal of Medicine, vol. 348, no. 7, pp. 593–600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. A. Kocher, M. D. Schuster, M. J. Szabolcs et al., “Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function,” Nature Medicine, vol. 7, no. 4, pp. 430–436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Kawamoto, T. Asahara, and D. W. Losordo, “Transplantation of endothelial progenitor cells for therapeutic neovascularization,” Cardiovascular Radiation Medicine, vol. 3, no. 3-4, pp. 221–225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Orlic, J. Kajstura, S. Chimenti, D. M. Bodine, A. Leri, and P. Anversa, “Bone marrow stem cells regenerate infarcted myocardium,” Pediatric Transplantation, vol. 7, no. 3, pp. 86–88, 2003. View at Google Scholar · View at Scopus
  49. K. Naruse, Y. Hamada, E. Nakashima et al., “Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy,” Diabetes, vol. 54, no. 6, pp. 1823–1828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. W.-C. Shyu, S.-Z. Lin, M.-F. Chiang, C.-Y. Su, and H. Li, “Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing β1 integrin-mediated angiogenesis in chronic stroke rats,” The Journal of Neuroscience, vol. 26, no. 13, pp. 3444–3453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Gómez-Navarro, J. L. Contreras, W. Arafat et al., “Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model,” Gene Therapy, vol. 7, no. 1, pp. 43–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Ohtsuka, H. Takano, Y. Zou et al., “Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization,” The FASEB Journal, vol. 18, no. 7, pp. 851–853, 2004. View at Google Scholar · View at Scopus
  53. B. E. Strauer, M. Brehm, T. Zeus et al., “Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans,” Circulation, vol. 106, no. 15, pp. 1913–1918, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Assmus, V. Schächinger, C. Teupe et al., “Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI),” Circulation, vol. 106, no. 24, pp. 3009–3017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Fernández-Avilés, J. A. San Román, J. García-Frade et al., “Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction,” Circulation Research, vol. 95, no. 7, pp. 742–748, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Schächinger, B. Assmus, M. B. Britten et al., “Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial,” Journal of the American College of Cardiology, vol. 44, no. 8, pp. 1690–1699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. D. M. Leistner, U. Fischer-Rasokat, J. Honold et al., “Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy,” Clinical Research in Cardiology, vol. 100, no. 10, pp. 925–934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Gennari, E. Gambini, B. Bassetti, M. Capogrossi, and G. Pompilio, “Emerging treatment options for refractory angina pectoris: ranolazine, shock wave treatment, and cell-based therapies,” Reviews in Cardiovascular Medicine, vol. 15, no. 1, pp. 31–37, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Tongers and D. W. Losordo, “Frontiers in nephrology: the evolving therapeutic applications of endothelial progenitor cells,” Journal of the American Society of Nephrology, vol. 18, no. 11, pp. 2843–2852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. H.-F. Tse, Y.-L. Kwong, J. K. F. Chan, G. Lo, C.-L. Ho, and C.-P. Lau, “Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation,” The Lancet, vol. 361, no. 9351, pp. 47–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Hamano, M. Nishida, K. Hirata et al., “Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results,” Japanese Circulation Journal, vol. 65, no. 9, pp. 845–847, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. E. C. Perin, H. F. R. Dohmann, R. Borojevic et al., “Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure,” Circulation, vol. 107, no. 18, pp. 2294–2302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Tateishi-Yuyama, H. Matsubara, T. Murohara et al., “Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial,” The Lancet, vol. 360, no. 9331, pp. 427–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Matoba, T. Tatsumi, T. Murohara et al., “Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia,” American Heart Journal, vol. 156, no. 5, pp. 1010–1018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Yamamoto, T. Kondo, S. Suzuki et al., “Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs: therapeutic effect by stem cell transplantation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 12, pp. e192–e196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Lenk, V. Adams, P. Lurz et al., “Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia,” European Heart Journal, vol. 26, no. 18, pp. 1903–1909, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Erbs, A. Linke, V. Adams et al., “Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study,” Circulation Research, vol. 97, no. 8, pp. 756–762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. J. D. Pearson, “Endothelial progenitor cells—hype or hope?” Journal of Thrombosis and Haemostasis, vol. 7, no. 2, pp. 255–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Yamahara and H. Itoh, “Potential use of endothelial progenitor cells for regeneration of the vasculature,” Therapeutic Advances in Cardiovascular Disease, vol. 3, no. 1, pp. 17–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Siddique, E. Shantsila, G. Y. Lip, and C. Varma, “Endothelial progenitor cells: what use for the cardiologist?” Journal of Angiogenesis Research, vol. 2, article 6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. E. Pasquier and S. Dias, “Endothelial progenitor cells: hope beyond controversy,” Current Cancer Drug Targets, vol. 10, no. 8, pp. 914–921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Madonna and R. De Caterina, “Circulating endothelial progenitor cells: do they live up to their name?” Vascular Pharmacology, vol. 67–69, pp. 2–5, 2015. View at Publisher · View at Google Scholar
  73. E. M. Van Craenenbroeck, A. H. Van Craenenbroeck, S. Van Ierssel et al., “Quantification of circulating CD34+/KDR+/CD45dim endothelial progenitor cells: analytical considerations,” International Journal of Cardiology, vol. 167, no. 5, pp. 1688–1695, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. L. C. Lee, C.-S. Chen, P.-F. Choong, A. Low, H. C. Tan, and K. K. Poh, “Time-dependent dynamic mobilization of circulating progenitor cells during percutaneous coronary intervention in diabetics,” International Journal of Cardiology, vol. 142, no. 2, pp. 199–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Hristov and C. Weber, “Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance,” Journal of Cellular and Molecular Medicine, vol. 8, no. 4, pp. 498–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. R. J. Medina, C. L. O'Neill, M. Sweeney et al., “Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities,” BMC Medical Genomics, vol. 3, article 18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. D. P. Sieveking, A. Buckle, D. S. Celermajer, and M. K. C. Ng, “Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay,” Journal of the American College of Cardiology, vol. 51, no. 6, pp. 660–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. D. G. Duda, K. S. Cohen, D. T. Scadden, and R. K. Jain, “A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood,” Nature Protocols, vol. 2, no. 4, pp. 805–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. N. M. Kane, Q. Xiao, A. H. Baker, Z. Luo, Q. Xu, and C. Emanueli, “Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation),” Pharmacology and Therapeutics, vol. 129, no. 1, pp. 29–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. He, Z. Xiao, X. Chen et al., “The expression of functional toll-like receptor 4 is associated with proliferation and maintenance of stem cell phenotype in endothelial progenitor cells (EPCs),” Journal of Cellular Biochemistry, vol. 111, no. 1, pp. 179–186, 2010. View at Publisher · View at Google Scholar · View at Scopus