Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 9721713, 12 pages
http://dx.doi.org/10.1155/2016/9721713
Research Article

Hybrid Binary Imperialist Competition Algorithm and Tabu Search Approach for Feature Selection Using Gene Expression Data

1Information Engineering College, Shanghai Maritime University, Shanghai 201306, China
2Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan

Received 15 April 2016; Accepted 22 June 2016

Academic Editor: Jialiang Yang

Copyright © 2016 Shuaiqun Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Feilotter, “A biologist’s guide to analysis of DNA microarray data,” The American Journal of Human Genetics, vol. 71, no. 6, pp. 1483–1484, 2002. View at Publisher · View at Google Scholar
  2. R. Simon, “Analysis of DNA microarray expression data,” Best Practice and Research: Clinical Haematology, vol. 22, no. 2, pp. 271–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Alshamlan, G. Badr, and Y. Alohali, “A comparative study of cancer classification methods using microarray gene expression profile,” in Proceedings of the 1st International Conference on Advanced Data and Information Engineering (DaEng '13), vol. 285 of Lecture Notes in Electrical Engineering, pp. 389–398, Springer, 2014. View at Google Scholar
  4. M. M. Kabir, M. Shahjahan, and K. Murase, “A new local search based hybrid genetic algorithm for feature selection,” Neurocomputing, vol. 74, no. 17, pp. 2914–2928, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Shen, W.-M. Shi, and W. Kong, “Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data,” Computational Biology and Chemistry, vol. 32, no. 1, pp. 53–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Li, X. Wu, and M. Tan, “Gene selection using hybrid particle swarm optimization and genetic algorithm,” Soft Computing, vol. 12, no. 11, pp. 1039–1048, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Alshamlan, G. Badr, and Y. Alohali, “MRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling,” BioMed Research International, vol. 2015, Article ID 604910, 15 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. H. M. Alshamlan, G. H. Badr, and Y. A. Alohali, “Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification,” Computational Biology and Chemistry, vol. 56, pp. 49–60, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L.-Y. Chuang, H.-W. Chang, C.-J. Tu, and C.-H. Yang, “Improved binary PSO for feature selection using gene expression data,” Computational Biology and Chemistry, vol. 32, no. 1, pp. 29–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition,” in Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC '07), pp. 4661–4667, IEEE, Singapore, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Glover, “Future paths for integer programming and links to artificial intelligence,” Computers & Operations Research, vol. 13, no. 5, pp. 533–549, 1986. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. M. Gong, L. Jiao, and L. Zhang, “Baldwinian learning in clonal selection algorithm for optimization,” Information Sciences, vol. 180, no. 8, pp. 1218–1236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, and Z. Ibrahim, “An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes,” Algorithms for Molecular Biology, vol. 8, article 15, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. B. V. Dasarathy, NN Concepts and Techniques: Nearest Neighbours (NN) Norms, IEEE Computer Society Press, 1991.
  15. T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967. View at Publisher · View at Google Scholar
  16. T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.
  17. D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, no. 1, pp. 109–118, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Orsenigo and C. Vercellis, “Multicategory classification via discrete support vector machines,” Computational Management Science, vol. 6, no. 1, pp. 101–114, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin dags for multiclass classification,” Advances in Neural Information Processing Systems, vol. 12, no. 3, pp. 547–553, 2010. View at Google Scholar
  20. L. Chin-Jen, “A comparison of methods for multiclass support vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002. View at Publisher · View at Google Scholar
  21. J. Weston, “Multi-class support vector machines,” in Proceedings of the European Symposium on Artificial Neural Networks (ESANN '99), pp. 1–28, 1999.
  22. K. Crammer and Y. Singer, “On the learnability and design of output codes for multiclass problems,” Machine Learning, vol. 47, no. 2-3, pp. 201–233, 2002. View at Publisher · View at Google Scholar · View at Scopus