Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 3706018, 10 pages
https://doi.org/10.1155/2017/3706018
Research Article

Markers of Alzheimer’s Disease in Primary Visual Cortex in Normal Aging in Mice

1Research Department, Asociación para Evitar la Ceguera en México, “Hospital Dr. Luis Sanchez Bulnes” IAP, 04030 México City, Mexico
2Divisón de Ciencias Biológicas de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
3Neuroscience Division, Institute of Cellular Physiology, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
4Cell Biology Department, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
5Department of Biochemistry, School of Medicine, UNAM, Ciudad Universitaria, México City, Mexico

Correspondence should be addressed to Luis Fernando Hernández-Zimbrón; xm.manu@zednanrehfl

Received 4 June 2017; Accepted 9 August 2017; Published 12 September 2017

Academic Editor: Anna Di Vito

Copyright © 2017 Luis Fernando Hernández-Zimbrón et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wimo, L. Jonsson, and B. Winblad, “An estimate of the worldwide prevalence and direct costs of dementia in 2003,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 3, pp. 175–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Rubio-Perez and J. M. Morillas-Ruiz, “A review: inflammatory process in Alzheimer's disease, role of cytokines,” The Scientific World Journal, vol. 2012, Article ID 756357, 15 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A. Evans, “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Archives of Neurology, vol. 60, no. 8, pp. 1119–1122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. V. W. Henderson, “Estrogen-containing hormone therapy and Alzheimer's disease risk: Understanding discrepant inferences from observational and experimental research,” Neuroscience, vol. 138, no. 3, pp. 1031–1039, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. F. Hernández-Zimbrón and S. Rivas-Arancibia, “Deciphering an interplay of proteins associated with amyloid β 1–42 peptide and molecular mechanisms of Alzheimer's disease,” Reviews in the Neurosciences, vol. 25, no. 6, pp. 773–783, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. G. K. Gouras, J. Tsai, J. Naslund et al., “Intraneuronal Aβ42 accumulation in human brain,” The American Journal of Pathology, vol. 156, no. 1, pp. 15–20, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Hernández-Zimbrón and F. Selva Rivas-Arancibia, “Deciphering an interplay of protein associated amyloid beta peptide 1-42 and molecular mechanism of Alzheimers disease,” Reviews in Neurosciences, p. 25, 2014. View at Google Scholar
  9. K. Chiu, T.-F. Chan, A. Wu, I. Y.-P. Leung, K.-F. So, and R. C.-C. Chang, “Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?” Age, vol. 34, no. 3, pp. 633–649, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Liu and G. Hajnoczky, “Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 1972–1976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Kauppinen, J. J. Paterno, J. Blasiak, A. Salminen, and K. Kaarniranta, “Inflammation and its role in age-related macular degeneration,” Cellular and Molecular Life Sciences, vol. 73, no. 9, pp. 1765–1786, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Yin, L. Chen, X. Chen, and X. Liu, “Soluble amyloid β oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma,” Medical Hypotheses, vol. 71, no. 1, pp. 77–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Pinazo-Duran, R. Gallego-Pinazo, and J. J. García-Medina, “Oxidative stress and its downstream signaling in aging eyes,” Clinical Interventions in Aging, vol. 9, pp. 637–652, 2014. View at Publisher · View at Google Scholar
  14. A. Martorana, M. Bulati, S. Buffa et al., “Immunosenescence, inflammation and Alzheimer’s disease,” Longevity & healthspan, vol. 1, no. 1, p. 8, 2012. View at Google Scholar
  15. K. S. Krabbe, M. Pedersen, and H. Bruunsgaard, “Inflammatory mediators in the elderly,” Experimental Gerontology, vol. 39, no. 5, pp. 687–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Bruunsgaard, “The clinical impact of systemic low-level inflammation in elderly populations. With special reference to cardiovascular disease, dementia and mortality,” Danish Medical Bulletin, vol. 53, no. 3, pp. 285–309, 2006. View at Google Scholar · View at Scopus
  17. M. de Martinis, C. Franceschi, D. Monti, and L. Ginaldi, “Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity,” FEBS Letters, vol. 579, no. 10, pp. 2035–2039, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Candore, G. Colonna-Romano, C. R. Balistreri et al., “Biology of longevity: Role of the innate immune system,” Rejuvenation Research, vol. 9, no. 1, pp. 143–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Wyss-Coray, “Ageing, neurodegeneration and brain rejuvenation,” Nature, vol. 539, no. 7628, pp. 180–186, 2016. View at Publisher · View at Google Scholar
  20. L. F. Hernández-Zimbrón, E. Gorostieta-Salas, M. L. Díaz-Hung, R. Pérez-Garmendia, G. Gevorkian, and H. Quiroz-Mercado, “Beta Amyloid Peptides: Extracellular and Intracellular Mechanisms of Clearance in Alzheimers Disease,” in In Update on Dementia. InTech, 2016. View at Google Scholar
  21. J. Yao, S. Chen, Z. Mao, E. Cadenas, and R. D. Brinton, “2-deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer's disease,” PLoS ONE, vol. 6, no. 7, Article ID e21788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. F. M. LaFerla, K. N. Green, and S. Oddo, “Intracellular amyloid-β in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 8, no. 7, pp. 499–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. F. Hernandez-Zimbron, J. Luna-Muñoz, R. Mena et al., “Amyloid-β peptide binds to cytochrome C oxidase subunit 1,” PLoS ONE, vol. 7, no. 8, Article ID e42344, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. L. X. Zhang and X. H. Zhang, “The -secretasecomplex:from structuretofunction,” Front. Cell. Neuroscience, 2014. View at Publisher · View at Google Scholar
  25. L. F. Hernandez-Zimbron and S. Rivas-Arancibia, “Oxidative stress caused by ozone exposure induces β-amyloid 1–42 overproduction and mitochondrial accumulation by activating the amyloidogenic pathway,” Neuroscience, vol. 304, pp. 340–348, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. K. J. Young and J. P. Bennett, “The mitochondrial secret(ase) of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. S381–S400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. A. Butterfield and D. Boyd-Kimball, “Amyloid β-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain,” Brain Pathology, vol. 14, no. 4, pp. 426–432, 2004. View at Google Scholar · View at Scopus
  28. X. Huang, R. D. Moir, R. E. Tanzi, A. I. Bush, and J. T. Rogers, “Redox-active metals, oxidative stress, and Alzheimer's disease pathology,” Annals of the New York Academy of Sciences, vol. 1012, pp. 153–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Blurton-Jones and F. M. LaFerla, “Pathways by which Aβ facilitates tau pathology,” Current Alzheimer Research, vol. 3, no. 5, pp. 437–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Demuro, I. Parker, and G. E. Stutzmann, “Calcium signaling and amyloid toxicity in Alzheimer disease,” The Journal of Biological Chemistry, vol. 285, no. 17, pp. 12463–12468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. S. Aisen, J. Cummings, and L. S. Schneider, “Symptomatic and nonamyloid/tau based pharmacologic treatment for Alzheimer disease,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 3, Article ID a006395, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Crews and E. Masliah, “Molecular mechanisms of neurodegeneration in Alzheimers disease,” molecular genetics, p. q160, 2010. View at Google Scholar
  33. M. Tobo, “Immunohistochemical study of gliosis in the brain of aged and patients with dementia,” Fukuoka Acta Medica, vol. 75, no. 2, pp. 72–88, 1984. View at Google Scholar · View at Scopus
  34. J.-P. Coppé, C. K. Patil, F. Rodier et al., “Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor,” PLoS Biology, vol. 6, no. 12, pp. 2853–2868, 2008. View at Google Scholar · View at Scopus
  35. A. Salminen, J. Ojala, K. Kaarniranta, A. Haapasalo, M. Hiltunen, and H. A. Soininen, “Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype,” European Journal of Neuroscience, vol. 34, no. 1, pp. 3–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. M. Rodrigue, K. M. Kennedy, and D. C. Park, “Beta-amyloid deposition and the aging brain,” Neuropsychology Review, vol. 19, no. 4, pp. 436–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. N. L. Nadon, “Aged rodents for biogerontology research,” Handbook of Models for Human Aging, pp. 393–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. S. Boguski, “The mouse that roared,” Nature, vol. 420, no. 6915, pp. 515-516, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Vanhooren and C. Libert, “The mouse as a model organism in aging research: Usefulness, pitfalls and possibilities,” Ageing Research Reviews, vol. 12, no. 1, pp. 8–21, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. J. T. Eppig, J. E. Richardson, J. A. Kadin, M. Ringwald, J. A. Blake, and C. J. Bult, “Mouse Genome Informatics (MGI): reflecting on 25 years,” Mammalian Genome, vol. 26, no. 7-8, pp. 272–284, 2015. View at Publisher · View at Google Scholar
  41. M. A. Bogue, L. L. Peters, B. Paigen et al., “Accessing data resources in the mouse phenome database for genetic analysis of murine life span and health span,” Journals of Gerontology - Series A Biological Sciences and Medical Sciences, vol. 71, no. 2, pp. 170–177, 2016. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Pettan-Brewer, M. Treuting, and P., “Practical pathology of aging mice,” Pathobiology of Aging Age-related Diseases, vol. 1, no. 1, p. 7202, 2011. View at Publisher · View at Google Scholar
  43. B. T. Hyman, C. H. Phelps, T. G. Beach et al., “National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease,” Alzheimer's and Dementia, vol. 8, no. 1, pp. 1–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. MA. Ray, NA. Johnston, S. Verhulst, RA. Trammell, and LA. Toth, “Identification of markers for imminent death in mice used in longevity and aging research,” in Journal of the American Association for Laboratory Animal Science, vol. 49, pp. 282–288, 2010. View at Google Scholar