Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 247275, 5 pages
http://dx.doi.org/10.1155/2012/247275
Review Article

Endoplasmic Reticulum Stress-Associated Lipid Droplet Formation and Type II Diabetes

1Center for Molecular Medicine and Genetics, The Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
2Department of Immunology and Microbiology, The Wayne State University School of Medicine, Detroit, MI 48201, USA
3Karmanos Cancer Institute, The Wayne State University School of Medicine, Detroit, MI 48201, USA

Received 2 September 2011; Revised 14 November 2011; Accepted 15 November 2011

Academic Editor: Huiping Zhou

Copyright © 2012 Xuebao Zhang and Kezhong Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Zhang and R. J. Kaufman, “Signaling the unfolded protein response from the endoplasmic reticulum,” Journal of Biological Chemistry, vol. 279, no. 25, pp. 25935–25938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Schroder and R. J. Kaufman, “The mammalian unfolded protein response,” Annual Review of Biochemistry, vol. 74, pp. 739–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Rubio, D. Pincus, A. Korennykh, S. Schuck, H. El-Samad, and P. Walter, “Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity,” Journal of Cell Biology, vol. 193, no. 1, pp. 171–184, 2011. View at Publisher · View at Google Scholar
  5. K. Zhang and R. J. Kaufman, “From endoplasmic-reticulum stress to the inflammatory response,” Nature, vol. 454, no. 7203, pp. 455–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Yoshida, “ER stress and diseases,” FEBS Journal, vol. 274, no. 3, pp. 630–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Kaufman, “Orchestrating the unfolded protein response in health and disease,” Journal of Clinical Investigation, vol. 110, no. 10, pp. 1389–1398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. K. Clausen, K. Christiansen, P. K. Jensen, and O. Behnke, “Isolation of lipid particles from baker's yeast,” FEBS Letters, vol. 43, no. 2, pp. 176–179, 1974. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Christiansen and P. K. Jensen, “Membrane-bound lipid particles from beef heart chemical composition and structure,” Biochimica et Biophysica Acta, vol. 260, no. 3, pp. 449–459, 1972. View at Google Scholar · View at Scopus
  10. A. S. Greenberg, J. J. Egan, S. A. Wek, N. B. Garty, E. J. Blanchette-Mackie, and C. Londos, “Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets,” Journal of Biological Chemistry, vol. 266, no. 17, pp. 11341–11346, 1991. View at Google Scholar · View at Scopus
  11. D. A. Brown, “Lipid droplets: proteins floating on a pool of fat,” Current Biology, vol. 11, no. 11, pp. R446–R449, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. P. T. Bozza and J. P. B. Viola, “Lipid droplets in inflammation and cancer,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 82, no. 4–6, pp. 243–250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. A. Harris, J. T. Haas, R. S. Streeper et al., “DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes,” Journal of Lipid Research, vol. 52, no. 4, pp. 657–667, 2011. View at Publisher · View at Google Scholar
  14. K. M. Szymanski, D. Binns, R. Bartz et al., “The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20890–20895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Guo, K. R. Cordes, R. V. Farese Jr., and T. C. Walther, “Lipid droplets at a glance,” Journal of Cell Science, vol. 122, no. 6, pp. 749–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Bostrom, L. Andersson, L. Li et al., “The assembly of lipid droplets and its relation to cellular insulin sensitivity,” Biochemical Society Transactions, vol. 37, no. 5, pp. 981–985, 2009. View at Publisher · View at Google Scholar
  17. P. Bostrom, M. Rutberg, J. Ericsson et al., “Cytosolic lipid droplets increase in size by microtubule-dependent complex formation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, pp. 1945–1951, 2005. View at Google Scholar
  18. H. L. Ploegh, “A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum,” Nature, vol. 448, no. 7152, pp. 435–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Z. Hartman, P. S. Liu, J. K. Zehmer et al., “Sterol-induced dislocation of 3-Hydroxy-3-methylglutaryl coenzyme a reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets,” Journal of Biological Chemistry, vol. 285, no. 25, pp. 19288–19298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Athenstaedt, D. Zweytick, A. Jandrositz, S. D. Kohlwein, and G. Daum, “Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 181, no. 20, pp. 6441–6448, 1999. View at Google Scholar · View at Scopus
  21. S. Cermelli, Y. Guo, S. P. Gross, and M. A. Welte, “The lipid-droplet proteome reveals that droplets are a protein-storage depot,” Current Biology, vol. 16, no. 18, pp. 1783–1795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Fujimoto, H. Itabe, J. Sakai et al., “Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7,” Biochimica et Biophysica Acta, vol. 1644, no. 1, pp. 47–59, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Welte, “Proteins under new management: lipid droplets deliver,” Trends in Cell Biology, vol. 17, no. 8, pp. 363–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Welte, S. Cermelli, J. Griner et al., “Regulation of lipid-droplet transport by the perilipin homolog LSD2,” Current Biology, vol. 15, no. 14, pp. 1266–1275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Ohsaki, J. Cheng, A. Fujita, T. Tokumoto, and T. Fujimoto, “Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B,” Molecular Biology of the Cell, vol. 17, no. 6, pp. 2674–2683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Kim, Y. Shi, R. C. Austin, and G. H. Werstuck, “Valproate protects cells fom ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3,” Journal of Cell Science, vol. 118, no. 1, pp. 89–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. G. H. Werstuck, S. R. Lentz, S. Dayal et al., “Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways,” Journal of Clinical Investigation, vol. 107, no. 10, pp. 1263–1273, 2001. View at Google Scholar · View at Scopus
  28. W. Fei, H. Wang, C. Bielby, and H. Yang, “Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae,” Biochemical Journal, vol. 424, no. 1, pp. 61–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-S. Lee, R. Mendez, H. H. Heng, Z. Yang, and K. Zhang, “Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation,” American Journal of Translational Research, vol. 4, pp. 102–113, 2012. View at Google Scholar
  30. C. Zhang, G. Wang, Z. Zheng et al., “Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice,” Hepatology. In press. View at Publisher · View at Google Scholar
  31. K. Zhang, S. Wang, J. Malhotra et al., “The unfolded protein response transducer IRE1alpha prevents ER stress-induced hepatic steatosis,” The EMBO Journal, vol. 30, pp. 1357–1375, 2011. View at Google Scholar
  32. S. Schuck, W. A. Prinz, K. S. Thorn, C. Voss, and P. Walter, “Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response,” Journal of Cell Biology, vol. 187, no. 4, pp. 525–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. E. Thomas, L. E. Dalton, M. L. Daly, E. Malzer, and S. J. Marciniak, “Diabetes as a disease of endoplasmic reticulum stress,” Diabetes/Metabolism Research and Reviews, vol. 26, no. 8, pp. 611–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Scheuner and R. J. Kaufman, “The unfolded protein response: a pathway that links insulin demand with β-cell failure and diabetes,” Endocrine Reviews, vol. 29, no. 3, pp. 317–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. D. L. Brasaemle, G. Dolios, L. Shapiro, and R. Wang, “Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes,” Journal of Biological Chemistry, vol. 279, no. 5, pp. 46835–46842, 2004. View at Google Scholar · View at Scopus
  36. B. H. Goodpaster, J. He, S. Watkins, and D. E. Kelley, “Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5755–5761, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. J. He, B. H. Goodpaster, and D. E. Kelley, “Effects of weight loss and physical activity on muscle lipid content and droplet size,” Obesity Research, vol. 12, no. 5, pp. 761–769, 2004. View at Google Scholar · View at Scopus
  38. J. G. Granneman, H. P. Moore, R. L. Granneman, A. S. Greenberg, M. S. Obin, and Z. Zhu, “Analysis of lipolytic protein trafficking and interactions in adipocytes,” Journal of Biological Chemistry, vol. 282, no. 8, pp. 5726–5735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Nian, Z. Sun, L. Yu, S. Y. Toh, J. Sang, and P. Li, “Fat-specific protein 27 undergoes ubiquitin-dependent degradation regulated by triacylglycerol synthesis and lipid droplet formation,” Journal of Biological Chemistry, vol. 285, no. 13, pp. 9604–9615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Y. Toh, J. Gong, G. Du et al., “Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of Fsp27 deficient mice,” PLoS One, vol. 3, no. 8, Article ID e2890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Nishino, Y. Tamori, S. Tateya et al., “FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets,” Journal of Clinical Investigation, vol. 118, no. 8, pp. 2808–2821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Abdul-Ghani and R. A. Defronzo, “Pathogenesis of insulin resistance in skeletal muscle,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 476279, 19 pages, 2010. View at Publisher · View at Google Scholar
  43. H. A. Tuttle, G. Davis-Gorman, S. Goldman, J. G. Copeland, and P. F. McDonagh, “Proinflammatory cytokines are increased in type 2 diabetic women with cardiovascular disease,” Journal of Diabetes and Its Complications, vol. 18, no. 6, pp. 343–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Fernandez-Veledo, R. Vila-Bedmar, I. Nieto-Vazquez, and M. Lorenzo, “C-Jun N-terminal kinase 1/2 activation by tumor necrosis factor-α induces insulin resistance in human visceral but not subcutaneous adipocytes: reversal by liver X receptor agonists,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3583–3593, 2009. View at Publisher · View at Google Scholar
  45. S. Ranjit, E. Boutet, P. Gandhi et al., “Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes,” Journal of Lipid Research, vol. 52, no. 2, pp. 221–236, 2011. View at Publisher · View at Google Scholar
  46. S. Laing, G. Wang, T. Briazova et al., “Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues,” American Journal of Physiology, vol. 299, no. 4, pp. C736–C749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. J. Pandol, F. S. Gorelick, A. Gerloff, and A. Lugea, “Alcohol abuse, endoplasmic reticulum stress and pancreatitis,” Digestive Diseases, vol. 28, no. 6, pp. 776–782, 2010. View at Publisher · View at Google Scholar
  48. E. Jorgensen, A. Stinson, L. Shan, J. Yang, D. Gietl, and A. P. Albino, “Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells,” BMC Cancer, vol. 8, article 229, 2008. View at Publisher · View at Google Scholar · View at Scopus