Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012 (2012), Article ID 312943, 9 pages
http://dx.doi.org/10.1155/2012/312943
Review Article

ER Stress and Lipid Metabolism in Adipocytes

1Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, MSB no. 533, Richmond, VA 23298, USA
2Department of Internal Medicine, McGuire Veterans Affairs Medical Center, Richmond, VA 23298, USA

Received 11 September 2011; Accepted 28 October 2011

Academic Editor: Kezhong Zhang

Copyright © 2012 Beth S. Zha and Huiping Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. E. Bays, J. M. González-Campoy, R. R. Henry et al., “Is adiposopathy (sick fat) an endocrine disease?” International Journal of Clinical Practice, vol. 62, no. 10, pp. 1474–1483, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. B. K. Surmi and A. H. Hasty, “Macrophage infiltration into adipose tissue: initiation, propagation and remodeling,” Future Lipidology, vol. 3, no. 5, pp. 545–556, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. Mittra, V. S. Bansal, and P. K. Bhatnagar, “From a glucocentric to a lipocentric approach towards metabolic syndrome,” Drug Discovery Today, vol. 13, no. 5-6, pp. 211–218, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. Kabir, K. J. Catalano, S. Ananthnarayan et al., “Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance,” American Journal of Physiology, vol. 288, no. 2, pp. E454–E461, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. H. Yoshii, T. K. T. Lam, N. Gupta et al., “Effects of portal free fatty acid elevation on insulin clearance and hepatic glucose flux,” American Journal of Physiology, vol. 290, no. 6, pp. E1089–E1097, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. H. Yoshida, “ER stress and diseases,” FEBS Journal, vol. 274, no. 3, pp. 630–658, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. Alhusaini, K. McGee, B. Schisano et al., “Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: salicylate alleviates this stress,” Biochemical and Biophysical Research Communications, vol. 397, no. 3, pp. 472–478, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. G. Boden, X. Duan, C. Homko et al., “Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals,” Diabetes, vol. 57, no. 9, pp. 2438–2444, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. F. Gregor, L. Yang, E. Fabbrini et al., “Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss,” Diabetes, vol. 58, no. 3, pp. 693–700, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. N. K. Sharma, S. K. Das, A. K. Mondal et al., “Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4532–4541, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori, “XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor,” Cell, vol. 107, no. 7, pp. 881–891, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Yoshida, T. Matsui, N. Hosokawa, R. J. Kaufman, K. Nagata, and K. Mori, “A time-dependent phase shift in the mammalian unfolded protein response,” Developmental Cell, vol. 4, no. 2, pp. 265–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. H. Lee, N. N. Iwakoshi, and L. H. Glimcher, “XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response,” Molecular and Cellular Biology, vol. 23, no. 21, pp. 7448–7459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Sriburi, S. Jackowski, K. Mori, and J. W. Brewer, “XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum,” Journal of Cell Biology, vol. 167, no. 1, pp. 35–41, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. M. Reimold, N. N. Iwakoshi, J. Manis et al., “Plasma cell differentiation requires the transcription factor XBP-1,” Nature, vol. 412, no. 6844, pp. 300–307, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. H. Lee, G. C. Chu, N. N. Iwakoshi, and L. H. Glimcher, “XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands,” EMBO Journal, vol. 24, no. 24, pp. 4368–4380, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. Sriburi, H. Bommiasamy, G. L. Buldak et al., “Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis,” Journal of Biological Chemistry, vol. 282, no. 10, pp. 7024–7034, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. R. V. Farese Jr. and T. C. Walther, “Lipid droplets finally get a little R-E-S-P-E-C-T,” Cell, vol. 139, no. 5, pp. 855–860, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. T. C. Walther and R. V. Farese Jr., “The life of lipid droplets,” Biochimica et Biophysica Acta, vol. 1791, no. 6, pp. 459–466, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. H. Robenek, I. Buers, M. J. Robenek et al., “Topography of lipid droplet-associated proteins: insights from freeze-fracture replica immunogold labeling,” Journal of Lipids, vol. 2011, Article ID 409371, 10 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. Y. Guo, T. C. Walther, M. Rao et al., “Functional genomic screen reveals genes involved in lipid-droplet formation and utilization,” Nature, vol. 453, no. 7195, pp. 657–661, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. H. Sha, Y. He, H. Chen et al., “The IRE1α-XBP1 pathway of the unfolded protein response is required for adipogenesis,” Cell Metabolism, vol. 9, no. 6, pp. 556–564, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. F. Damiano, S. Alemanno, G. V. Gnoni, and L. Siculella, “Translational control of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum starvation or ER stress is mediated by an internal ribosome entry site,” Biochemical Journal, vol. 429, no. 3, pp. 603–612, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. D. J. DeGracia, R. Kumar, C. R. Owen, G. S. Krause, and B. C. White, “Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 2, pp. 127–141, 2002. View at Google Scholar · View at Scopus
  25. Q. Yang and P. Sarnow, “Location of the internal ribosome entry site in the 5' non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: evidence for specific RNA-protein interactions,” Nucleic Acids Research, vol. 25, no. 14, pp. 2800–2807, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Ameri and A. L. Harris, “Activating transcription factor 4,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 1, pp. 14–21, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. D. T. Rutkowski and R. J. Kaufman, “All roads lead to ATF4,” Developmental Cell, vol. 4, no. 4, pp. 442–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. R. C. Wek, H. Y. Jiang, and T. G. Anthony, “Coping with stress: EIF2 kinases and translational control,” Biochemical Society Transactions, vol. 34, no. 1, pp. 7–11, 2006. View at Google Scholar · View at Scopus
  29. N. Batchvarova, X. Z. Wang, and D. Ron, “Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153),” EMBO Journal, vol. 14, no. 19, pp. 4654–4661, 1995. View at Google Scholar · View at Scopus
  30. S. L. Clarke, C. E. Robinson, and J. M. Gimble, “CAAT/Enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor γ2 promoter,” Biochemical and Biophysical Research Communications, vol. 240, no. 1, pp. 99–103, 1997. View at Publisher · View at Google Scholar · View at PubMed
  31. G. Adelmant, J. D. Gilbert, and S. O. Freytag, “Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPβ function,” Journal of Biological Chemistry, vol. 273, no. 25, pp. 15574–15581, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Wang, Z. Huang, Y. Du, Y. Cheng, S. Chen, and F. Guo, “ATF4 regulates lipid metabolism and thermogenesis,” Cell Research, vol. 20, no. 2, pp. 174–184, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. E. Bobrovnikova-Marjon, G. Hatzivassiliou, C. Grigoriadou et al., “PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 42, pp. 16314–16319, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. I. Shimomura, R. E. Hammer, J. A. Richardson et al., “Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy,” Genes and Development, vol. 12, no. 20, pp. 3182–3194, 1998. View at Google Scholar · View at Scopus
  35. S. L. Lay, I. Lefrère, C. Trautwein, I. Dugail, and S. Krief, “Insulin and sterol-regulatory element-binding protein-1c (SREBP-1c) regulation of gene expression in 3T3-L1 adipocytes: identification of CCAAT/enhancer-binding protein β as an SREBP-1c target,” Journal of Biological Chemistry, vol. 277, no. 38, pp. 35625–35634, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. D. J. Thuerauf, M. Marcinko, P. J. Belmont, and C. C. Glembotski, “Effects of the isoform-specific characteristics of ATF6α and ATF6β on endoplasmic reticulum stress response gene expression and cell viability,” Journal of Biological Chemistry, vol. 282, no. 31, pp. 22865–22878, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. K. Haze, H. Yoshida, H. Yanagi, T. Yura, and K. Mori, “Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress,” Molecular Biology of the Cell, vol. 10, no. 11, pp. 3787–3799, 1999. View at Google Scholar · View at Scopus
  38. E. L. Davenport, G. J. Morgan, and F. E. Davies, “Untangling the unfolded protein response,” Cell Cycle, vol. 7, no. 7, pp. 865–869, 2008. View at Google Scholar · View at Scopus
  39. Y. Adachi, K. Yamamoto, T. Okada, H. Yoshida, A. Harada, and K. Mori, “ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum,” Cell Structure and Function, vol. 33, no. 1, pp. 75–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. T. Rutkowski, J. Wu, S. H. Back et al., “UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators,” Developmental Cell, vol. 15, no. 6, pp. 829–840, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. K. Yamamoto, K. Takahara, S. Oyadomari et al., “Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress,” Molecular Biology of the Cell, vol. 21, no. 17, pp. 2975–2986, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Schröder and R. J. Kaufman, “ER stress and the unfolded protein response,” Mutation Research, vol. 569, no. 1-2, pp. 29–63, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. R. Singh, S. Kaushik, Y. Wang et al., “Autophagy regulates lipid metabolism,” Nature, vol. 458, no. 7242, pp. 1131–1135, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. Martinez-Vicente, Z. Talloczy, E. Wong et al., “Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease,” Nature Neuroscience, vol. 13, no. 5, pp. 567–576, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. R. Singh, “Autophagy and regulation of lipid metabolism,” Results and Problems in Cell Differentiation, vol. 52, pp. 35–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Shibata, K. Yoshimura, N. Furuya et al., “The MAP1-LC3 conjugation system is involved in lipid droplet formation,” Biochemical and Biophysical Research Communications, vol. 382, no. 2, pp. 419–423, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. Shibata, K. Yoshimura, H. Tamura et al., “LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation,” Biochemical and Biophysical Research Communications, vol. 393, no. 2, pp. 274–279, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. H. Nakatogawa, Y. Ichimura, and Y. Ohsumi, “Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion,” Cell, vol. 130, no. 1, pp. 165–178, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. J. Kovsan, N. Bashan, A. S. Greenberg, and A. Rudich, “Potential role of autophagy in modulation of lipid metabolism,” American Journal of Physiology, vol. 298, no. 1, pp. E1–E7, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. R. Baerga, Y. Zhang, P. H. Chen, S. Goldman, and S. Jin, “Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice,” Autophagy, vol. 5, no. 8, pp. 1118–1130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Zhang, S. Goldman, R. Baerga, Y. Zhao, M. Komatsu, and S. Jin, “Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 19860–19865, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. J. Zhou, W. Zhang, B. Liang et al., “PPARγ activation induces autophagy in breast cancer cells,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 11, pp. 2334–2342, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. J. Yan, H. Yang, G. Wang et al., “Autophagy augmented by troglitazone is independent of EGFR transactivation and correlated with AMP-activated protein kinase signaling,” Autophagy, vol. 6, no. 1, pp. 67–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Kawakami, R. Inagi, H. Takano et al., “Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells,” Nephrology Dialysis Transplantation, vol. 24, no. 9, pp. 2665–2672, 2009. View at Publisher · View at Google Scholar · View at PubMed
  55. T. Yorimitsu, U. Nair, Z. Yang, and D. J. Klionsky, “Endoplasmic reticulum stress triggers autophagy,” Journal of Biological Chemistry, vol. 281, no. 40, pp. 30299–30304, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. W. X. Ding and X. M. Yin, “Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome,” Autophagy, vol. 4, no. 2, pp. 141–150, 2008. View at Google Scholar · View at Scopus
  57. W. X. Ding, H. M. Ni, W. Gao et al., “Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability,” American Journal of Pathology, vol. 171, no. 2, pp. 513–524, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. Y. Kouroku, E. Fujita, I. Tanida et al., “ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation,” Cell Death and Differentiation, vol. 14, no. 2, pp. 230–239, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. Price, A. K. Zaidi, J. Bohensky, V. Srinivas, I. M. Shapiro, and H. Ali, “Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress,” Journal of Cellular Physiology, vol. 222, no. 3, pp. 502–508, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. L. Qin, Z. Wang, L. Tao, and Y. Wang, “ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy,” Autophagy, vol. 6, no. 2, pp. 239–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Ogata, S. I. Hino, A. Saito et al., “Autophagy is activated for cell survival after endoplasmic reticulum stress,” Molecular and Cellular Biology, vol. 26, no. 24, pp. 9220–9231, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. L. Yang, P. Li, S. Fu, E. S. Calay, and G. S. Hotamisligil, “Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance,” Cell Metabolism, vol. 11, no. 6, pp. 467–478, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. A. K. Gupta, B. Li, G. J. Cerniglia, M. S. Ahmed, S. M. Hahn, and A. Maity, “The HIV protease inhibitor nelfinavir downregulates Akt phosphorylation by inhibiting proteasomal activity and inducing the unfolded protein response,” Neoplasia, vol. 9, no. 4, pp. 271–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. S. M. Schleicher, L. Moretti, V. Varki, and B. Lu, “Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches,” Drug Resistance Updates, vol. 13, no. 3, pp. 79–86, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. W. Jia, R. M. Loria, M. A. Park, A. Yacoub, P. Dent, and M. R. Graf, “The neuro-steroid, 5-androstene 3β,17α diol; induces endoplasmic reticulum stress and autophagy through PERK/eIF2α signaling in malignant glioma cells and transformed fibroblasts,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 12, pp. 2019–2029, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. K. W. Kim, L. Moretti, L. R. Mitchell, D. K. Jung, and B. Lu, “Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2α in caspase-3/7-deficient cells,” Oncogene, vol. 29, no. 22, pp. 3241–3251, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. T. Rzymski, M. Milani, L. Pike et al., “Regulation of autophagy by ATF4 in response to severe hypoxia,” Oncogene, vol. 29, no. 31, pp. 4424–4435, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. M. Milani, T. Rzymski, H. R. Mellor et al., “The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib,” Cancer Research, vol. 69, no. 10, pp. 4415–4423, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. S. Nishina, M. Korenaga, I. Hidaka et al., “Hepatitis C virus protein and iron overload induce hepatic steatosis through the unfolded protein response in mice,” Liver International, vol. 30, no. 5, pp. 683–692, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. Y.-K. Seo, T.-I. Jeon, H. K. Chong, J. Biesinger, X. Xie, and T. F. Osborne, “Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy,” Cell Metabolism, vol. 13, no. 4, pp. 367–375, 2011. View at Publisher · View at Google Scholar · View at PubMed
  71. J. Cheng, Y. Ohsaki, K. Tauchi-Sato, A. Fujita, and T. Fujimoto, “Cholesterol depletion induces autophagy,” Biochemical and Biophysical Research Communications, vol. 351, no. 1, pp. 246–252, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. G. P. Van Guilder, G. L. Hoetzer, J. J. Greiner, B. L. Stauffer, and C. A. DeSouza, “Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults,” Obesity, vol. 14, no. 12, pp. 2127–2131, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. C. Tsigos, I. Kyrou, E. Chala et al., “Circulating tumor necrosis factor alpha concentrations are higher in abdominal versus peripheral obesity,” Metabolism, vol. 48, no. 10, pp. 1332–1335, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. P. A. Kern, S. Ranganathan, C. Li, L. Wood, and G. Ranganathan, “Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance,” American Journal of Physiology, vol. 280, no. 5, pp. E745–E751, 2001. View at Google Scholar
  75. R. W. O'Rourke, “Inflammation in obesity-related diseases,” Surgery, vol. 145, no. 3, pp. 255–259, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. G. H. Goossens, “The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance,” Physiology and Behavior, vol. 94, no. 2, pp. 206–218, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. B. Gustafson, A. Hammarstedt, C. X. Andersson, and U. Smith, “Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2276–2283, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. L. Meng, J. Zhou, H. Sasano, T. Suzuki, K. M. Zeitoun, and S. E. Bulun, “Tumor necrosis factor α and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor γ: mechanism of desmoplastic reaction,” Cancer Research, vol. 61, no. 5, pp. 2250–2255, 2001. View at Google Scholar · View at Scopus
  79. J. P. Bastard, M. Maachi, C. Lagathu et al., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” European Cytokine Network, vol. 17, no. 1, pp. 4–12, 2006. View at Google Scholar · View at Scopus
  80. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. R. Monteiro and I. Azevedo, “Chronic inflammation in obesity and the metabolic syndrome,” Mediators of Inflammation, vol. 2010, Article ID 289645, 10 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  82. H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. J. Hirosumi, G. Tuncman, L. Chang et al., “A central, role for JNK in obesity and insulin resistance,” Nature, vol. 420, no. 6913, pp. 333–336, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. G. Boden and S. Merali, “Measurement of the increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals,” Methods in Enzymology, vol. 489, pp. 67–82, 2011. View at Publisher · View at Google Scholar · View at PubMed
  85. P. Jiao, J. Ma, B. Feng et al., “FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways,” Obesity, vol. 19, no. 3, pp. 483–491, 2011. View at Publisher · View at Google Scholar · View at PubMed
  86. S. A. Polyzos, J. Kountouras, C. Zavos, and E. Tsiaousi, “The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease,” Diabetes, Obesity and Metabolism, vol. 12, no. 5, pp. 365–383, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. S. A. Polyzos, J. Kountouras, and C. Zavos, “Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines,” Current Molecular Medicine, vol. 9, no. 3, pp. 299–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. E. Ros, “Nuts and novel biomarkers of cardiovascular disease,” American Journal of Clinical Nutrition, vol. 89, no. 5, pp. 1649S–1656S, 2009. View at Publisher · View at Google Scholar · View at PubMed
  89. P. A. Kern, G. B. Di Gregorio, T. Lu, N. Rassouli, and G. Ranganathan, “Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expression,” Diabetes, vol. 52, no. 7, pp. 1779–1785, 2003. View at Google Scholar · View at Scopus
  90. L. Zhou, M. Liu, J. Zhang, H. Chen, L. Q. Dong, and F. Liu, “DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation,” Diabetes, vol. 59, no. 11, pp. 2809–2816, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. L. Zhou and F. Liu, “Autophagy: roles in obesity-induced ER stress and adiponectin downregulation in adipocytes,” Autophagy, vol. 6, no. 8, pp. 1196–1197, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. M. Kars, L. Yang, M. F. Gregor et al., “Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women,” Diabetes, vol. 59, no. 8, pp. 1899–1905, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. M. Miranda, X. Escoté, V. Ceperuelo-Mallafré et al., “Relation between human LPIN1, hypoxia and endoplasmic reticulum stress genes in subcutaneous and visceral adipose tissue,” International Journal of Obesity, vol. 34, no. 4, pp. 679–686, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. N. Marsollier, P. Ferré, and F. Foufelle, “Novel insights in the interplay between inflammation and metabolic diseases: a role for the pathogen sensing kinase PKR,” Journal of Hepatology, vol. 54, no. 6, pp. 1307–1309, 2011. View at Publisher · View at Google Scholar · View at PubMed
  95. G. S. Hotamisligil, “Inflammation and endoplasmic reticulum stress in obesity and diabetes,” International Journal of Obesity, vol. 32, no. 7, pp. S52–S54, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. U. Özcan, E. Yilmaz, L. Özcan et al., “Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes,” Science, vol. 313, no. 5790, pp. 1137–1140, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. Y. Nakatani, H. Kaneto, D. Kawamori et al., “Involvement of endoplasmic reticulum stress in insulin resistance and diabetes,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 847–851, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus