Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 639250, 12 pages
Review Article

The Mutations Associated with Dilated Cardiomyopathy

1Department of Virology and Developmental Genetics, Faculty of Health Sciences and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
2Pediatric Cardiology Unit, Faculty of Health Sciences and Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheva 84101, Israel

Received 19 February 2012; Revised 25 April 2012; Accepted 17 May 2012

Academic Editor: Danuta Szczesna-Cordary

Copyright © 2012 Ruti Parvari and Aviva Levitas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM). The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes.