Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 639250, 12 pages
http://dx.doi.org/10.1155/2012/639250
Review Article

The Mutations Associated with Dilated Cardiomyopathy

1Department of Virology and Developmental Genetics, Faculty of Health Sciences and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
2Pediatric Cardiology Unit, Faculty of Health Sciences and Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheva 84101, Israel

Received 19 February 2012; Revised 25 April 2012; Accepted 17 May 2012

Academic Editor: Danuta Szczesna-Cordary

Copyright © 2012 Ruti Parvari and Aviva Levitas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Maron, J. A. Towbin, G. Thiene et al., “Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention,” Circulation, vol. 113, no. 14, pp. 1807–1816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Towbin and N. E. Bowles, “The failing heart,” Nature, vol. 415, no. 6868, pp. 227–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Ahmad, J. G. Seidman, and C. E. Seidman, “The genetic basis for cardiac remodeling,” Annual Review of Genomics and Human Genetics, vol. 6, pp. 185–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Pahl, A. I. Dipchand, and M. Burch, “Heart transplantation for heart failure in children,” Heart Failure Clinics, vol. 6, no. 4, pp. 575–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Wilkinson, D. C. Landy, S. D. Colan et al., “The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years,” Heart Failure Clinics, vol. 6, no. 4, pp. 401–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. T. Hsu and C. E. Canter, “Dilated cardiomyopathy and heart failure in children,” Heart Failure Clinics, vol. 6, no. 4, pp. 415–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Rathe, N. L. T. Carlsen, H. Oxhøj, and G. Nielsen, “Long-term cardiac follow-up of children treated with anthracycline doses of 300 mg/m2 or less for acute lymphoblastic leukemia,” Pediatric Blood and Cancer, vol. 54, no. 3, pp. 444–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Ewer and S. M. Ewer, “Cardiotoxicity of anticancer treatments: what the cardiologist needs to know,” Nature Reviews Cardiology, vol. 7, no. 10, pp. 564–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Watkins, H. Ashrafian, and C. Redwood, “Inherited cardiomyopathies,” New England Journal of Medicine, vol. 364, no. 17, pp. 1643–1656, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Myerburg, “Scientific gaps in the prediction and prevention of sudden cardiac death,” Journal of Cardiovascular Electrophysiology, vol. 13, no. 7, pp. 709–723, 2002. View at Google Scholar · View at Scopus
  11. D. Zipes and J. Jalife, Cardiac Electrophysiology: From Cell to Bedside, Saunders Elsevier, Philadelphia, Pa, USA, 5th edition, 2009.
  12. L. Mestroni, C. Rocco, D. Gregori et al., “Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity,” Journal of the American College of Cardiology, vol. 34, no. 1, pp. 181–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. M. B. Codd, D. D. Sugrue, B. J. Gersh, and L. J. Melton, “Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy: a population-based study in Olmsted County, Minnesota, 1975-1984,” Circulation, vol. 80, no. 3, pp. 564–572, 1989. View at Google Scholar · View at Scopus
  14. D. Gregori, C. Rocco, S. Miocic, and L. Mestroni, “Estimating the frequency of familial dilated cardiomyopathy in the presence of misclassification errors,” Journal of Applied Statistics, vol. 28, pp. 53–62, 2001. View at Google Scholar
  15. L. Mestroni, C. Rocco, D. Gregori et al., “Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity,” Journal of the American College of Cardiology, vol. 34, no. 1, pp. 181–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kärkkäinen and K. Peuhkurinen, “Genetics of dilated cardiomyopathy,” Annals of Medicine, vol. 39, no. 2, pp. 91–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Mestroni, C. Rocco, D. Gregori et al., “Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity,” Journal of the American College of Cardiology, vol. 34, no. 1, pp. 181–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Grünig, J. A. Tasman, H. Kücherer, W. Franz, W. Kübler, and H. A. Katus, “Frequency and phenotypes of familial dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 31, no. 1, pp. 186–194, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. Online Mendelian Inheritance in Man, OMIM, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Md, USA and National Center for Biotechnology Information, National Library of Medicine, Bethesda, Md, USA, http://www.ncbi.nlm.nih.gov/omim/.
  20. W. Guo, S. Schafer, M. L. Greaser et al., “RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing,” Nature Medicine, vol. 18, pp. 766–773, 2012. View at Google Scholar
  21. R. Knöll, R. Postel, J. Wang et al., “Laminin-α4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells,” Circulation, vol. 116, no. 5, pp. 515–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Lefeber, A. P. M. de Brouwer, E. Morava et al., “Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation,” PLoS Genetics, vol. 7, no. 12, Article ID e1002427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Theis, K. M. Sharpe, M. E. Matsumoto et al., “Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy,” Circulation, vol. 4, no. 6, pp. 585–594, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. He, “Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes,” American Journal of Physiology, vol. 299, no. 1, pp. H210–H216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Levitas, E. Muhammad, G. Harel et al., “Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase,” European Journal of Human Genetics, vol. 18, no. 10, pp. 1160–1165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. S. Herman, L. Lam, M. R. G. Taylor et al., “Truncations of titin causing dilated cardiomyopathy,” New England Journal of Medicine, vol. 366, no. 7, pp. 619–628, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. R. E. Hershberger, J. Lindenfeld, L. Mestroni, C. E. Seidman, M. R. G. Taylor, and J. A. Towbin, “Genetic Evaluation of Cardiomyopathy-A Heart Failure Society of America Practice Guideline,” Journal of Cardiac Failure, vol. 15, no. 2, pp. 83–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Ingles, P. R. Zodgekar, L. Yeates, I. Macciocca, C. Semsarian, and D. Fatkin, “Guidelines for genetic testing of inherited cardiac disorders,” Heart Lung and Circulation, vol. 20, no. 11, pp. 681–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. L. Burkett and R. E. Hershberger, “Clinical and genetic issues in familial dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 45, no. 7, pp. 969–981, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. R. E. Hershberger and J. D. Siegfried, “Update 2011: clinical and genetic issues in familial dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 57, no. 16, pp. 1641–1649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Marshall, “Waiting for the revolution,” Science, vol. 331, no. 6017, pp. 526–529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. S. Bloss, N. J. Schork, and E. J. Topol, “Effect of direct-to-consumer genomewide profiling to assess disease risk,” New England Journal of Medicine, vol. 364, no. 6, pp. 524–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. P. Evans, E. M. Meslin, T. M. Marteau, and T. Caulfield, “Deflating the genomic bubble,” Science, vol. 331, no. 6019, pp. 861–862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Ibraghimov-Beskrovnaya, J. M. Ervasti, C. J. Leveille, C. A. Slaughter, S. W. Sernett, and K. P. Campbell, “Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix,” Nature, vol. 355, no. 6362, pp. 696–702, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Toda, T. Chiyonobu, H. Xiong et al., “Fukutin and α-dystroglycanopahties,” Acta Myologica, vol. 24, no. 2, pp. 60–63, 2005. View at Google Scholar · View at Scopus
  36. K. Haghighi, F. Kolokathis, A. O. Gramolini et al., “A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1388–1393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Ohte, I. Miyoshi, D. C. Sane, and W. C. Little, “Zebrafish with antisense-knockdown of cardiac troponin C as a model of hereditary dilated cardiomyopathy,” Circulation Journal, vol. 73, no. 9, pp. 1595–1596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. L. Ho, Y. H. Lin, W. Y. Tsai, F. J. Hsieh, and H. J. Tsai, “Conditional antisense-knockdown of zebrafish cardiac troponin C as a new animal model for dilated cardiomyopathy,” Circulation Journal, vol. 73, no. 9, pp. 1691–1697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. A. T. Geisterfer-Lowrance, S. Kass, G. Tanigawa et al., “A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation,” Cell, vol. 62, no. 5, pp. 999–1006, 1990. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Morimoto, Q. W. Lu, K. Harada et al., “Ca2+-desensitizing effect of a deletion mutation ΔK210 in cardiac troponin T that causes familial dilated cardiomyopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 913–918, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. C. K. Du, S. Morimoto, K. Nishii et al., “Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation,” Circulation Research, vol. 101, no. 2, pp. 185–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Yanaga, S. Morimoto, and I. Ohtsuki, “Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy,” Journal of Biological Chemistry, vol. 274, no. 13, pp. 8806–8812, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Miller, D. Szczesna, P. R. Housmans et al., “Abnormal contractile function in transgenic mice expressing a familial hypertrophic cardiomyopathy-linked troponin T (I79N) mutation,” Journal of Biological Chemistry, vol. 276, no. 6, pp. 3743–3755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. N. K. Lakdawala, L. Dellefave, C. S. Redwood et al., “Familial dilated cardiomyopathy caused by an alpha-tropomyosin mutation. The distinctive natural history of sarcomeric dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 55, no. 4, pp. 320–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Robinson, P. J. Griffiths, H. Watkins, and C. S. Redwood, “Dilated and hypertrophic cardiomyopathy mutations in troponin and α-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments,” Circulation Research, vol. 101, no. 12, pp. 1266–1273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. A. N. Chang, K. Harada, M. J. Ackerman, and J. D. Potter, “Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in α-tropomyosin,” Journal of Biological Chemistry, vol. 280, no. 40, pp. 34343–34349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Carballo, P. Robinson, R. Otway et al., “Identification and functional characterization of cardiac troponin i as a novel disease gene in autosomal dominant dilated cardiomyopathy,” Circulation Research, vol. 105, no. 4, pp. 375–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Szczesna-Cordary, G. Guzman, S. S. Ng, and J. Zhao, “Familial hypertrophic cardiomyopathy-linked alterations in Ca2+ binding of human cardiac myosin regulatory light chain affect cardiac muscle contraction,” Journal of Biological Chemistry, vol. 279, no. 5, pp. 3535–3542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. J. Van Dijk, D. Dooijes, C. D. Remedios et al., “Cardiac myosin-binding protein C mutations and hypertrophic ardiomyopathy haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction,” Circulation, vol. 119, no. 11, pp. 1473–1483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Satoh, M. Takahashi, T. Sakamoto, M. Hiroe, F. Marumo, and A. Kimura, “Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene,” Biochemical and Biophysical Research Communications, vol. 262, no. 2, pp. 411–417, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Itoh-Satoh, T. Hayashi, H. Nishi et al., “Titin mutations as the molecular basis for dilated cardiomyopathy,” Biochemical and Biophysical Research Communications, vol. 291, no. 2, pp. 385–393, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Hayashi, T. Arimura, M. Itoh-Satoh et al., “Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 44, no. 11, pp. 2192–2201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Arber, J. J. Hunter, J. Ross et al., “MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure,” Cell, vol. 88, no. 3, pp. 393–403, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Knöll, M. Hoshijima, H. M. Hoffman et al., “The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy,” Cell, vol. 111, no. 7, pp. 943–955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Mohapatra, S. Jimenez, J. H. Lin et al., “Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis,” Molecular Genetics and Metabolism, vol. 80, no. 1-2, pp. 207–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Kimura, “Contribution of genetic factors to the pathogenesis of dilated cardiomyopathy: the cause of dilated cardiomyopathy: genetic or acquired? (genetic-side),” Circulation Journal, vol. 75, no. 7, pp. 1756–1765, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. O. Cazorla, Y. Wu, T. C. Irving, and H. Granzier, “Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes,” Circulation Research, vol. 88, no. 10, pp. 1028–1035, 2001. View at Google Scholar · View at Scopus
  58. H. Fujita, D. Labeit, B. Gerull, S. Labeit, and H. L. Granzier, “Titin isoform-dependent effect of calcium on passive myocardial tension,” American Journal of Physiology, vol. 287, no. 6, pp. H2528–H2534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Fuchs and D. A. Martyn, “Length-dependent Ca2+ activation in cardiac muscle: some remaining questions,” Journal of Muscle Research and Cell Motility, vol. 26, no. 4-5, pp. 199–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. T. M. Olson, S. Illenberger, N. Y. Kishimoto, S. Huttelmaier, M. T. Keating, and B. M. Jockusch, “Metavinculin mutations alter actin interaction in dilated cardiomyopathy,” Circulation, vol. 105, no. 4, pp. 431–437, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. M. R. G. Taylor, D. Slavov, L. Ku et al., “Prevalence of desmin mutations in dilated cardiomyopathy,” Circulation, vol. 115, no. 10, pp. 1244–1251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Duboscq-Bidot, P. Xu, P. Charron et al., “Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy,” Cardiovascular Research, vol. 77, no. 1, pp. 118–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Purevjav, J. Varela, M. Morgado et al., “Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis,” Journal of the American College of Cardiology, vol. 56, no. 18, pp. 1493–1502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Frey, J. A. Richardson, and E. N. Olson, “Calsarcins, a novel family of sarcomeric calcineurin-binding proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14632–14637, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Heineke and J. D. Molkentin, “Regulation of cardiac hypertrophy by intracellular signalling pathways,” Nature Reviews Molecular Cell Biology, vol. 7, no. 8, pp. 589–600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. Zhou, P. Ruiz-Lozano, M. E. Martone, and J. Chen, “Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to α-actinin-2 and protein kinase C,” Journal of Biological Chemistry, vol. 274, no. 28, pp. 19807–19813, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Arimura, T. Hayashi, H. Terada et al., “A cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C,” Journal of Biological Chemistry, vol. 279, no. 8, pp. 6746–6752, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Vatta, B. Mohapatra, S. Jimenez et al., “Mutations in cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction,” Journal of the American College of Cardiology, vol. 42, no. 11, pp. 2014–2027, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Arimura, N. Inagaki, T. Hayashi et al., “Impaired binding of ZASP/Cypher with phosphoglucomutase 1 is associated with dilated cardiomyopathy,” Cardiovascular Research, vol. 83, no. 1, pp. 80–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Arimura, T. Nakamura, S. Hiroi et al., “Characterization of the human nebulette gene: a polymorphism in an actin-binding motif is associated with nonfamilial idiopathic dilated cardiomyopathy,” Human Genetics, vol. 107, no. 5, pp. 440–451, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. M. L. Bang, T. Centner, F. Fornoff et al., “The complete gene sequence of titin, expression of an unusual 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system,” Circulation Research, vol. 89, no. 11, pp. 1065–1072, 2001. View at Google Scholar · View at Scopus
  72. Y. Aihara, M. Kurabayashi, Y. Saito et al., “Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter,” Hypertension, vol. 36, no. 1, pp. 48–53, 2000. View at Google Scholar · View at Scopus
  73. S. H. Witt, D. Labeit, H. Granzier, S. Labeit, and C. C. Witt, “Dimerization of the cardiac ankyrin protein CARP: implications for MARP titin-based signaling,” Journal of Muscle Research and Cell Motility, vol. 26, no. 6-8, pp. 401–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Matsumoto, T. Hayashi, N. Inagaki et al., “Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy,” Journal of Muscle Research and Cell Motility, vol. 26, no. 6-8, pp. 367–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Inagaki, T. Hayashi, T. Arimura et al., “αB-crystallin mutation in dilated cardiomyopathy,” Biochemical and Biophysical Research Communications, vol. 342, no. 2, pp. 379–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Arimura, T. Hayashi, Y. Matsumoto et al., “Structural analysis of four and half LIM protein-2 in dilated cardiomyopathy,” Biochemical and Biophysical Research Communications, vol. 357, no. 1, pp. 162–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Lange, D. Auerbach, P. McLoughlin et al., “Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2,” Journal of Cell Science, vol. 115, no. 24, pp. 4925–4936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. J. L. Martin, R. Mestril, R. Hilal-Dandan, L. L. Brunton, and W. H. Dillmann, “Small heat shock proteins and protection against ischemic injury in cardiac myocytes,” Circulation, vol. 96, no. 12, pp. 4343–4348, 1997. View at Google Scholar · View at Scopus
  79. N. Golenhofen, W. Ness, R. Koob, P. Htun, W. Schaper, and D. Drenckhahn, “Ischemia-induced phosphorylation and translocation of stress protein αB-crystallin to Z lines of myocardium,” American Journal of Physiology, vol. 274, no. 5, pp. H1457–H1464, 1998. View at Google Scholar · View at Scopus
  80. G. Rodriguez, T. Ueyama, T. Ogata et al., “Molecular genetic and functional characterization implicate muscle-restricted coiled-coil gene (MURC) as a causal gene for familial dilated cardiomyopathy,” Circulation, vol. 4, no. 4, pp. 349–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Di Donato, “Disorders related to mitochondrial membranes: pathology of the respiratory chain and neurodegeneration,” Journal of Inherited Metabolic Disease, vol. 23, no. 3, pp. 247–263, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. J. A. Ibdah, M. J. Bennett, P. Rinaldo et al., “A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women,” New England Journal of Medicine, vol. 340, no. 22, pp. 1723–1731, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. U. Spiekerkoetter, A. Eeds, Z. Yue, J. Haines, A. W. Strauss, and M. Summar, “Uniparental disomy of chromosome 2 resulting in lethal trifunctional protein deficiency due to homozygous α-subunit mutations,” Human Mutation, vol. 20, no. 6, pp. 447–451, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. A. J. Duncan, M. Bitner-Glindzicz, B. Meunier et al., “A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease,” American Journal of Human Genetics, vol. 84, no. 5, pp. 558–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Parfait, D. Chretien, A. Rötig, C. Marsac, A. Munnich, and P. Rustin, “Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome,” Human Genetics, vol. 106, no. 2, pp. 236–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Rustin, A. Munnich, and A. Rötig, “Succinate dehydrogenase and human diseases: new insights into a well-known enzyme,” European Journal of Human Genetics, vol. 10, no. 5, pp. 289–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Rustin and A. Rötig, “Inborn errors of complex II—unusual human mitochondrial diseases,” Biochimica et Biophysica Acta, vol. 1553, no. 1-2, pp. 117–122, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Bourgeron, P. Rustin, D. Chretien et al., “Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency,” Nature Genetics, vol. 11, no. 2, pp. 144–149, 1995. View at Google Scholar · View at Scopus
  89. R. Horváth, A. Abicht, E. Holinski-Feder et al., “Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA),” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 1, pp. 74–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. A. T. Pagnamenta, I. P. Hargreaves, A. J. Duncan et al., “Phenotypic variability of mitochondrial disease caused by a nuclear mutation in complex II,” Molecular Genetics and Metabolism, vol. 89, no. 3, pp. 214–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Van Coster, S. Seneca, J. Smet et al., “Homozygous Gly555Glu mutation in the nuclear-encoded 70 kDa flavoprotein gene causes instability of the respiratory chain complex II,” American Journal of Medical Genetics, vol. 120, no. 1, pp. 13–18, 2003. View at Google Scholar · View at Scopus
  92. M. A. Birch-Machin, R. W. Taylor, B. Cochran, B. A. C. Ackrell, and D. M. Turnbull, “Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene,” Annals of Neurology, vol. 48, no. 3, pp. 330–335, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. J. A. Towbin and N. E. Bowles, “Arrhythmogenic inherited heart muscle diseases in children,” Journal of Electrocardiology, vol. 34, pp. 151–165, 2001. View at Google Scholar · View at Scopus
  94. F. Scaglia, J. A. Towbin, W. J. Craigen et al., “Clinical Spectrum, Morbidity, and Mortality in 113 Pediatric Patients with Mitochondrial Disease,” Pediatrics, vol. 114, no. 4, pp. 925–931, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Vohanka, M. Vytopil, J. Bednarik et al., “A mutation in the X-linked Emery-Dreifuss muscular dystrophy gene in a patient affected with conduction cardiomyopathy,” Neuromuscular Disorders, vol. 11, no. 4, pp. 411–413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Fatkin, C. Macrae, T. Sasaki et al., “Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease,” New England Journal of Medicine, vol. 341, no. 23, pp. 1715–1724, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. V. Decostre, R. B. Yaou, and G. Bonne, “Laminopathies affecting skeletal and cardiac muscles: clinical and pathophysiological aspects,” Acta Myologica, vol. 24, no. 2, pp. 104–109, 2005. View at Google Scholar · View at Scopus
  98. H. J. Worman and G. Bonne, “‘Laminopathies’: a wide spectrum of human diseases,” Experimental Cell Research, vol. 313, no. 10, pp. 2121–2133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Muchir, P. Pavlidis, V. Decostre et al., “Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1282–1293, 2007. View at Publisher · View at Google Scholar · View at Scopus