Table of Contents Author Guidelines Submit a Manuscript
Critical Care Research and Practice
Volume 2012, Article ID 372956, 7 pages
http://dx.doi.org/10.1155/2012/372956
Clinical Study

The Microcirculation Is Unchanged in Neonates with Severe Respiratory Failure after the Initiation of ECMO Treatment

1Intensive Care, Erasmus Medical Center-Sophia Children’s Hospital, University Medical Center, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
2Pediatric Intensive Care Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
3Department of Intensive Care, Erasmus Medical Center, University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands

Received 29 December 2011; Revised 13 March 2012; Accepted 22 March 2012

Academic Editor: Arnaldo Dubin

Copyright © 2012 Anke P. C. Top et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Gaffney, S. M. Wildhirt, M. J. Griffin, G. M. Annich, and M. W. Radomski, “Extracorporeal life support,” British Medical Journal, vol. 341, Article ID c5317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. H. Bartlett and L. Gattinoni, “Current status of extracorporeal life support (ECMO) for cardiopulmonary failure,” Minerva Anestesiologica, vol. 76, no. 7, pp. 534–540, 2010. View at Google Scholar · View at Scopus
  3. Extracorporeal Life Support Organization (ELSO), “ECLS Registry Report,” International Summary, July 2010.
  4. B. L. Short, M. K. Miller, and K. D. Anderson, “Extracorporeal membrane oxygenation in the management of respiratory failure in the newborn,” Clinics in Perinatology, vol. 14, no. 3, pp. 737–748, 1987. View at Google Scholar · View at Scopus
  5. K. van Meurs, ECMO Extracorporeal Cardiopulmonary Support in Critical Care, 3rd edition, 2005.
  6. A. P. C. Top, C. Ince, M. van Dijk, and D. Tibboel, “Changes in buccal microcirculation following extracorporeal membrane oxygenation in term neonates with severe respiratory failure,” Critical Care Medicine, vol. 37, no. 3, pp. 1121–1124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Groner, J. W. Winkelman, A. G. Harris et al., “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nature Medicine, vol. 5, no. 10, pp. 1209–1213, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. De Backer, S. Hollenberg, C. Boerma et al., “How to evaluate the microcirculation: report of a round table conference,” Critical Care, vol. 11, article R101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. C. Boerma, K. R. Mathura, P. H. van der Voort, P. E. Spronk, and C. Ince, “Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study,” Critical Care, vol. 9, no. 6, pp. R601–R606, 2005. View at Google Scholar · View at Scopus
  10. A. P. C. Top, C. Ince, N. De Meij, M. van Dijk, and D. Tibboel, “Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care,” Critical Care Medicine, vol. 39, no. 1, pp. 8–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Sakr, M. J. Dubois, D. De Backer, J. Creteur, and J. L. Vincent, “Persistent-microcirculatory alterations are associated with organ failure and death in patients with septic shock,” Critical Care Medicine, vol. 32, no. 9, pp. 1825–1831, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Chierego, C. Verdant, and D. De Backer, “Microcirculatory alterations in critically ill patients,” Minerva Anestesiologica, vol. 72, no. 4, pp. 199–205, 2006. View at Google Scholar · View at Scopus
  13. I. Sluiter, I. Reiss, U. Kraemer, R. D. Krijger, D. Tibboel, and R. J. Rottier, “Vascular abnormalities in human newborns with pulmonary hypertension,” Expert Review of Respiratory Medicine, vol. 5, no. 2, pp. 245–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. den Uil, W. K. Lagrand, P. E. Spronk et al., “Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study,” Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 1, pp. 129–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology, vol. 107, no. 6, pp. 939–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Dubois, D. De Backer, D. Schmartz, and J. L. Vincent, “Microcirculatory alterations in cardiac surgery with and without cardiopulmonary bypass,” The Annals of Thoracic Surgery, vol. 28, p. S76, 2002. View at Google Scholar
  17. D. De Backer, M. J. Dubois, D. Schmartz et al., “Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia,” The Annals of Thoracic Surgery, vol. 88, no. 5, pp. 1396–1403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. G. Christ, S. Schaudig, M. Niklas et al., “Monitoring of the microcirculation in cardiac surgery and neonates using orthogonal polarization spectral imaging,” Progress in Applied Microcirculation, vol. 24, pp. 82–93, 2000. View at Google Scholar
  19. O. Genzel-Boroviczény, F. Christ, and V. Glas, “Blood transfusion increases functional capillary density in the skin of anemic preterm infants,” Pediatric Research, vol. 56, no. 5, pp. 751–755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Boldt and C. Ince, “The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review,” Intensive Care Medicine, vol. 36, no. 8, pp. 1299–1308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. J. Peek and R. K. Firmin, “The inflammatory and coagulative response to prolonged extracorporeal membrane oxygenation,” ASAIO Journal, vol. 45, no. 4, pp. 250–263, 1999. View at Google Scholar · View at Scopus
  22. S. Agati, C. Mignosa, G. Ciccarello, S. Dario, and A. Ündar, “Pulsatile ECMO in neonates and infants: first European clinical experience with a new device,” ASAIO Journal, vol. 51, no. 5, pp. 508–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Agati, C. Mignosa, G. Ciccarello, D. Salvo, and A. Ündar, “Initial European clinical experience with pulsatile extracorporeal membrane oxygenation,” The Journal of Heart and Lung Transplantation, vol. 25, no. 4, pp. 400–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Agati, G. Ciccarello, D. Salvo, A. Undar, and C. Mignosa, “Pulsatile ECMO as bridge to recovery and cardiac transplantation in pediatric population: a comparative study,” The Journal of Heart and Lung Transplantation, vol. 26, no. 2, supplement, p. S87, 2007. View at Google Scholar
  25. R. P. Dellinger, M. M. Levy, J. M. Carlet et al., “Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008,” Intensive Care Medicine, vol. 34, no. 1, pp. 17–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Trzeciak, J. V. McCoy, R. Phillip Dellinger et al., “Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis.,” Intensive Care Medicine, vol. 34, no. 12, pp. 2210–2217, 2008. View at Google Scholar · View at Scopus
  27. S. Tibby, “Transpulmonary thermodilution: finally, a gold standard for pediatric cardiac output measurement,” Pediatric Critical Care Medicine, vol. 9, no. 3, pp. 341–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. W. P. de Boode, “Cardiac output monitoring in newborns,” Early Human Development, vol. 86, no. 3, pp. 143–148, 2010. View at Publisher · View at Google Scholar · View at Scopus