Case Reports in Obstetrics and Gynecology

Case Reports in Obstetrics and Gynecology / 2014 / Article

Case Report | Open Access

Volume 2014 |Article ID 968547 |

Tomohiro Okuda, Sadao Yamashita, Yoshio Ogino, Hisashi Kataoka, Jo Kitawaki, "An Unusual Case of Fulminant Type 1 Diabetes during the Second Trimester of Pregnancy", Case Reports in Obstetrics and Gynecology, vol. 2014, Article ID 968547, 4 pages, 2014.

An Unusual Case of Fulminant Type 1 Diabetes during the Second Trimester of Pregnancy

Academic Editor: Giampiero Capobianco
Received24 Apr 2014
Revised22 Jul 2014
Accepted22 Jul 2014
Published11 Aug 2014


Fulminant type 1 diabetes is a new subtype of rapid-onset type 1 diabetes, with pancreatic exocrine dysfunction, that usually develops during the third trimester of pregnancy. We describe a patient with fulminant type 1 diabetes onset during her second trimester, resulting in premature delivery. The 34-year-old woman, without any known risk factors for diabetes mellitus, experienced a sudden stillbirth at 24-weeks gestation. Her blood glucose level was 950 mg/dL and she was positive for urine ketone bodies. The condition met all the diagnostic criteria for fulminant type 1 diabetes, and was diagnosed as such. Although this disease is rare, its progression is rapid, and its clinical course is severe and occasionally leads to death; therefore, a full knowledge of the disease is important to facilitate an accurate diagnosis.

1. Introduction

Fulminant type 1 diabetes is a new subtype of type 1 diabetes in which the pancreatic islet cells fail rapidly, leading to hyperglycemia and ketoacidosis; the incidence of this disease clearly increases during the third trimester of pregnancy [1, 2]. Here, we describe a case of fulminant type 1 diabetes mellitus during the second trimester of pregnancy, which resulted in ketoacidosis and a premature birth.

2. Case Presentation

The patient was a 34-year-old Japanese woman (gravida 1, para 1) whose previous personal and family medical histories were unremarkable. During this pregnancy, the patient’s physical findings, cervical length, laboratory data, urinalyses, and fetal growth determinations were all within normal ranges; glucosuria or ketonuria was not detected.

At 23 weeks and 6 days of gestation, physical findings, fetal growth, cervical length, laboratory data, and urinalysis were all within normal range. Two days later, the patient thought she had caught a cold because of the onset of malaise and thirst. At 24 weeks and 3 days of gestation, she presented with complaints of nausea and lumbago. Upon examination, the fetal heartbeat and movement were positive. The physician on duty at the time of admission initially diagnosed the condition as poor physical condition due to the common cold. However, 5 h later, the patient went into labor, and the gestational sac and fetal head appeared, resulting in emergent hospitalization and a subsequent premature delivery.

Upon admission, the patient was 166 cm tall, weighing 72.7 kg (before pregnancy, 63 kg), and had a body temperature of 36.9°C and a blood pressure of 156/74 mmHg. A physical examination revealed labored breathing and cold extremities. A stillborn infant (592 g, female) was soon delivered. The associated blood loss was minimal, and uterine contraction was good; the placenta and umbilical cord (130 g) appeared normal. Soon after delivery, the patient’s vitals were normal, apart from a blood pressure of 129/69 mmHg and a slight tachycardia, with a pulse of 113 beats/min. The patient had no lower abdominal pain but complained of epigastric pain.

The results of laboratory tests on blood collected during labor were examined (Table 1) and confirmed an extreme hyperglycemia, with a blood glucose level of 950 mg/dL. Her urinary sugar and ketones were markedly elevated. The labored breathing observed during delivery became more severe, and the patient developed clouded consciousness, leading to management in the intensive care unit (ICU).

UrinalysisKetone body 3+, glucose 4+

Arterial blood gas analysispH 6.98, PaO2: 129.0 mmHg, and
PaCO2: 9.3 mmHg

1 mmol/L, base excess −27.6 mmol/L

Complete blood countWBC: 32,050/L; hemoglobin: 13.6 g/dL; hematocrit: 41.5%; platelets: 37.9 × 104/L; glucose: 950 mg/dL; HbA1c: 5.7%

BiochemistryTP: 8.4 g/dL; albumin: 4.5 g/dL;
GOT: 32 IU/L; GP: 23 IU/dL;
LDH: 478 IU/L; gamma-GTP: 13 IU/L; amylase: 709 IU/L; CRP: 5.03 mg/dL;
BUN: 37 mg/dL; creatinine: 1.58 mg/dL;
Na: 128 mEq/L; K: 5.5 mEq/L; and Cl: 88 mEq/L

CoagulationPT: 22.8 seconds;
APTT: 42.4 seconds;
INR: 1.20 seconds;
Fibrinogen: 457 mg/dL;
D-dimers: 106.3 g/mL

AntibodiesInsulin antibodies <125.0 nU/mL;
GAD antibodies <1.3 U/mL;
IA-2 antibodies <0.4 U/mL;
C-peptide 0.1 ng/mL (2 h after meal)

Note: WBC: white blood cells; CRP: C-reactive protein; TP: total protein; GOT: glutamate-oxaloacetate transaminase; GPT: glutamate pyruvate transaminase; LDH: lactic dehydrogenase; gamma-GTP: gamma-glutamyl transpeptidase; BUN: blood urea nitrogen; PT: prothrombin time; APTT: activated partial thromboplastin time; INR: international normalized ratio; PaO2: partial oxygen pressure; PaCO2: partial carbon dioxide pressure; GAD: glutamic acid decarboxylase; IA-2: islet antigen-2.

After admission, the patient’s white blood cell count, serum amylase levels, blood urea nitrogen levels (BUN), and blood creatinine levels were elevated, leading to a diagnosis of sepsis, acute renal failure, and acute pancreatitis associated with diabetic acidosis. Following a diagnosis of coma due to diabetic ketoacidosis (DKA), acute renal failure, acute pancreatitis, and sepsis, insulin therapy (regular insulin, 7 U/h) and antimicrobial therapy (meropenem trihydrate) were initiated in conjunction with adequate hydration. The patient’s laboratory findings and blood gas data improved with this treatment (Figure 1), and she regained consciousness 24 h after admission to the ICU. Abdominal computed tomography (CT) was performed, revealing a CT severity index of 2 (Figure 2).

Despite elevated postadmission blood glucose levels, the patient’s glycated hemoglobin (HbA1c) levels remained normal. However, C-peptide blood levels of 0.1 ng/mL indicated depleted insulin levels; antibodies against insulin, glutamic acid decarboxylase (GAD), and islet antigen-2 were not detected. Despite marked elevations of C-reactive protein and white blood cell levels, the patient’s blood cultures were negative and she was afebrile. A search for factors contributing to DKA involved two investigations of possible viral infection (Table 2). The findings revealed elevated Coxsackie A9, B1, and B3 antibody titers. With the patient’s consent, human leukocyte antigen (HLA) typing was performed; the findings showed HLA-DRB10405-DQB10401. The condition met all the diagnostic criteria of fulminant type 1 diabetes [2] and was diagnosed as such.

Test Day 0 (admission)Day 13 (discharge)

Coxsackie A9 (NT)8 Units16 Units
Coxsackie B1 (NT)16 Units32 Units
Coxsackie B2 (NT)<4 Units<4 Units
Coxsackie B3 (NT)32 Units64 Units
Coxsackie B4 (NT)<4 Units<4 Units
Coxsackie B5 (NT)<4 Units<4 Units
Coxsackie B6 (NT)<4 Units<4 Units

NT: neutralization test.

The patient was discharged 13 days postpartum and her insulin levels remain depleted, 1 year later. The patient has required regular insulin (42 U/day) administration, with her blood glucose levels varying within the range of 150–250 mg/dL; occasional hypoglycemic episodes preclude higher insulin doses. The patient’s HbA1c levels have recently been maintained at approximately 8%.

3. Discussion

Buschard et al. previously reported patients with peripheral blood lymphocytes ratio changes, resembling active autoimmunity, 2 months before childbirth. The risk of developing type 1 diabetes during late pregnancy, therefore, increased 3.8-fold due to the involvement of autoimmune mechanisms [3]. Later, in 2000, Imagawa et al. reported that acute-onset type 1 diabetes mellitus could be classified into three subtypes, namely, the autoimmune type, nonautoimmune chronic type, and nonautoimmune fulminant type [1] and that the nonautoimmune fulminant type 1 diabetes develops in late pregnancy or during the puerperal period [4]. Initially, Imagawa et al. used the term “nonautoimmune fulminant type 1 diabetes” because of the inability to detect autoantibodies; however, since the cause of the subtype was unknown, the Japan Diabetes Society proposed the name “fulminant type 1 diabetes” [2]. In 2004, two sets of criteria were established for the diagnosis of the condition, namely, the “screening criteria" and the “diagnostic criteria.”

Fulminant type 1 diabetes is believed to develop due to an interaction between genetic and environmental factors [5]. Most cases are accompanied by symptoms of upper respiratory tract infections, suggesting that viral infections might be involved [5]. In 2005, Imagawa et al. reported that enterovirus infections could be a trigger for fulminant type 1 diabetes [6], and, in 2009, Tanaka et al. reported that enterovirus infections caused the devastating destruction of pancreatic beta cells, mediated by the chemokine circuit [7]. Genetically, HLA, a human histocompatibility complex molecule, is strongly involved [5]. Shimizu et al. reported that HLA-DRB10405-DQB10401 was involved as a trigger for fulminant type 1 diabetes not associated with pregnancy and that HLA-DQA10302, 0501 and HLA-DRB10301 (DR3), 0901 were involved in fulminant, pregnancy-associated type 1 diabetes [8]. However, in 2012, the Japan Diabetes Society revised the diagnostic criteria for fulminant type 1 diabetes and added HLA DRB104:05-DQB104:01 as a reference finding in the diagnostic criteria [2]. The present case met all of the diagnostic criteria for this disease. Specifically, the patient had a genetic predisposition for fulminant type 1 diabetes and demonstrated an antiviral immune response that might have caused destruction of the patient’s pancreatic beta cells.

In recent years, fulminant type 1 diabetes has been reported among Asians [9, 10], South Americans [11], and Caucasians [12, 13]; however, the reported HLA prototypes are not always HLA-DRB10405-DQB10401. The incidence of fulminant type 1 diabetes among Japanese women is less than 10% of that found in Europeans and Americans; however, several reports on fulminant type 1 diabetes are from Japan [14, 15].

Treatment of DKA includes aggressive volume replacement, insulin infusion, and careful electrolyte monitoring. However, the most common complications of DKA include hypoglycemia due to overzealous insulin treatment, hypokalemia due to insulin administration, and bicarbonate treatment of acidosis [16]. Insulin lowers serum potassium; therefore, potassium supplementation should be maintained in intravenous fluids, as described above, and carefully monitored. If the serum potassium level is <3.3 mmol/L, potassium replacement therapy should be started immediately with fluid therapy, and the initiation of insulin therapy should be delayed until the potassium concentration is restored to >3.3 nmol/L to avoid arrhythmia, cardiac arrest, and respiratory muscle weakness. Bicarbonate therapy is the most controversial area in the treatment of DKA. At a pH >7.0, reestablishing insulin activity blocks lipolysis and resolves ketoacidosis without added bicarbonate. In addition, the use of insulin causes ketone body metabolism, leading to bicarbonate recovery; therefore, bicarbonate must not be used unless the pH is ≤ 7. The intravenous infusion of large amounts of bicarbonate is likely to cause a metabolic alkalosis, which is difficult to treat and is likely to cause respiratory depression that may lead to CO2 narcosis.

In addition, fulminant type I diabetes aggravates both the maternal and fetal prognoses [17]. When gestational diabetes is left untreated, there is a risk of developing obstetrical complications; therefore, glycemic control before and during pregnancy is important [18]. However, predicting and preventing the onset of fulminant type 1 diabetes is not possible with conventional glycemic control methods. The patient should be interviewed and asked about experiencing marked xerostomia, polydipsia, or polyuria. If acknowledged, urinalyses should be conducted to detect urinary glucose and urinary ketones. If present, verification of whether or not the condition is DKA is required. If DKA develops during pregnancy, the maternal mortality is 4–15% [19]. Additionally, respiratory compensation aimed at correcting metabolic acidosis should not be mistaken for a hyperventilation syndrome.

Although there have been numerous findings on type 1 diabetes and its subtype, fulminant type 1 diabetes, the pathogenesis of the latter remains unknown. However, gynecologists and obstetricians need to be aware that fulminant type 1 diabetes may develop during pregnancy. Healthy, pregnant women develop the condition with a sudden onset, accompanied by prodromes consisting of flu-like symptoms or acute gastroenteritis-like symptoms. If an accurate diagnosis and treatment are not promptly achieved, the condition may lead to death within a few days.

Conflict of Interests

The authors do not have any conflict of interests to declare regarding the publication of this paper.


  1. A. Imagawa, T. Hanafusa, J. Miyagawa, and Y. Matsuzawa, “A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies,” The New England Journal of Medicine, vol. 342, no. 5, pp. 301–307, 2000. View at: Publisher Site | Google Scholar
  2. A. Imagawa, T. Hanafusa, T. Awata et al., “Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and acute-onset type 1 diabetes mellitus: new diagnostic criteria of fulminant type 1 diabetes mellitus (2012),” Journal of Diabetes Investigation, vol. 3, no. 6, pp. 536–539, 2012. View at: Publisher Site | Google Scholar
  3. K. Buschard, I. Buch, and L. Molsted-Pedersen, “Increased incidence of true type I diabetes acquired during pregnancy,” British Medical Journal, vol. 294, no. 6567, pp. 275–279, 1987. View at: Publisher Site | Google Scholar
  4. A. Imagawa, T. Hanafusa, Y. Uchigata et al., “Fulminant type 1 diabetes: a nationwide survey in Japan,” Diabetes Care, vol. 26, no. 8, pp. 2345–2352, 2003. View at: Publisher Site | Google Scholar
  5. A. Imagawa and T. Hanafusa, “Pathogenesis of fulminant type 1 diabetes,” The Review of Diabetic Studies, vol. 3, pp. 169–177, 2006. View at: Google Scholar
  6. A. Imagawa, T. Hanafusa, H. Makino, J.-I. Miyagawa, and P. Juto, “High titres of IgA antibodies to enterovirus in fulminant type-1 diabetes,” Diabetologia, vol. 48, no. 2, pp. 290–293, 2005. View at: Publisher Site | Google Scholar
  7. S. Tanaka, Y. Nishida, K. Aida et al., “Enterovirus infection, CXC chemokine ligand 10 (CXCL10), and CXCR3 circuit: a mechanism of accelerated β-cell failure in fulminant type 1 diabetes,” Diabetes, vol. 58, no. 10, pp. 2285–2291, 2009. View at: Publisher Site | Google Scholar
  8. I. Shimizu, H. Makino, A. Imagawa et al., “Clinical and immunogenetic characteristics of fulminant type 1 diabetes associated with pregnancy,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 471–476, 2006. View at: Publisher Site | Google Scholar
  9. F. Tan and W. K. Loh, “Fulminant type 1 diabetes associated with pregnancy: a report of 2 cases from Malaysia,” Diabetes Research and Clinical Practice, vol. 90, no. 2, pp. e30–e32, 2010. View at: Publisher Site | Google Scholar
  10. H. J. Kim, J. R. Hahm, J. H. Jung et al., “The first vietnamese patient with fulminant type 1 diabetes mellitus,” Internal Medicine, vol. 51, no. 17, pp. 2361–2363, 2012. View at: Publisher Site | Google Scholar
  11. R. A. McCauley and X. Wang, “Fulminant type 1 diabetes mellitus-like presentation in a Hispanic woman in the United States,” Diabetes and Metabolism, vol. 37, no. 4, pp. 356–358, 2011. View at: Publisher Site | Google Scholar
  12. C. Moreau, D. Drui, G. Arnault-Ouary, B. Charbonnel, L. Chaillous, and B. Cariou, “Fulminant type 1 diabetes in Caucasians: a report of three cases,” Diabetes and Metabolism, vol. 34, no. 5, pp. 529–532, 2008. View at: Publisher Site | Google Scholar
  13. L. Bresson, A. Bourgain, T. Depret et al., “Ketoacidosis complicated by fetal death revealing fulminant diabetes during the third trimester of pregnancy,” Journal de Gynecologie Obstetrique et Biologie de la Reproduction, vol. 39, no. 7, pp. 588–591, 2010 (French). View at: Publisher Site | Google Scholar
  14. E. Kawasaki and K. Eguchi, “Is type 1 diabetes in the Japanese population the same as among Caucasians?” Annals of the New York Academy of Sciences, vol. 1037, pp. 96–103, 2004. View at: Publisher Site | Google Scholar
  15. A. Imagawa and T. Hanafusa, “Fulminant type 1 diabetes: is it an Asian-oriented disease?” Internal Medicine, vol. 44, no. 9, pp. 913–914, 2005. View at: Publisher Site | Google Scholar
  16. A. E. Kitabchi, G. E. Umpierrez, M. B. Murphy et al., “Hyperglycemic crises in patients with diabetes mellitus,” Diabetes Care, vol. 26, supplement 1, pp. S109–S117, 2003. View at: Publisher Site | Google Scholar
  17. N. Murabayashi, T. Sugiyama, C. Kihira, H. Kusaka, T. Sugihara, and N. Sagawa, “A case of fulminant type 1 diabetes mellitus associated with pregnancy,” Journal of Obstetrics and Gynaecology Research, vol. 35, no. 6, pp. 1121–1124, 2009. View at: Publisher Site | Google Scholar
  18. S. Gizzo, T. S. Patrelli, M. Rossanese et al., “An update on diabetic women obstetrical outcomes linked to preconception and pregnancy glycemic profile: a systematic literature review,” Scientific World Journal, vol. 2013, Article ID 254901, 9 pages, 2013. View at: Publisher Site | Google Scholar
  19. D. Kamalakannan, V. Baskar, D. M. Barton, and T. A. M. Abdu, “Diabetic ketoacidosis in pregnancy,” Postgraduate Medical Journal, vol. 79, no. 934, pp. 454–457, 2003. View at: Publisher Site | Google Scholar

Copyright © 2014 Tomohiro Okuda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

No related content is available yet for this article.

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.