Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011 (2011), Article ID 567389, 13 pages
http://dx.doi.org/10.4061/2011/567389
Review Article

Metabolic Syndrome and Renal Injury

1Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Hospital Department of Health, Executive Yuan, No. 199, Sec. 1, Sanmin Road, Taichung 403, Taiwan
2Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 160, Sec. 3, Taichung-Kang Road, Taichung 407, Taiwan

Received 23 October 2010; Revised 12 December 2010; Accepted 22 December 2010

Academic Editor: Masaki Mogi

Copyright © 2011 Yi-Jing Sheen and Wayne Huey-Herng Sheu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Pei, S. W. Kuo, D. A. Wu et al., “The relationships between insulin resistance and components of metabolic syndrome in Taiwanese Asians,” International Journal of Clinical Practice, vol. 59, no. 12, pp. 1408–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement—executive summary,” Critical Pathways in Cardiology, vol. 4, no. 4, pp. 198–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. W. H. H. Sheu, S. Y. Chuang, W. J. Lee, S. T. Tsai, P. Chou, and C. H. Chen, “Predictors of incident diabetes, metabolic syndrome in middle-aged adults: a 10-year follow-up study from Kinmen, Taiwan,” Diabetes Research and Clinical Practice, vol. 74, no. 2, pp. 162–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Iglesias and J. J. Díez, “Adipose tissue in renal disease: clinical significance and prognostic implications,” Nephrology Dialysis Transplantation, vol. 25, no. 7, pp. 2066–2077, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Rosito, J. M. Massaro, U. Hoffmann et al., “Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample the framingham heart study,” Circulation, vol. 117, no. 5, pp. 605–613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. I. T. Lee, C. N. Huang, W. J. Lee, H. S. Lee, and W. H. H. Sheu, “Aggravation of albuminuria by metabolic syndrome in type 2 diabetic Asian subjects,” Diabetes Research and Clinical Practice, vol. 81, no. 3, pp. 345–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Lucove, S. Vupputuri, G. Heiss, K. North, and M. Russell, “Metabolic syndrome and the development of CKD in American Indians: the Strong Heart Study,” American Journal of Kidney Diseases, vol. 51, no. 1, pp. 21–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Chang, W. Y. Shau, Y. D. Jiang et al., “Type 2 diabetes prevalence and incidence among adults in Taiwan during 1999–2004: a national health insurance data set study,” Diabetic Medicine, vol. 27, no. 6, pp. 636–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Savino, P. Pelliccia, F. Chiarelli, and A. Mohn, “Obesity-related renal injury in childhood,” Hormone Research in Paediatrics, vol. 73, no. 5, pp. 303–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. B. Prasad et al., “Prevalence, detection, and management of the metabolic syndrome in patients with acute myocardial infarction: role of an obesity-centric definition,” Cardiology Research and Practice, vol. 2010, Article ID 814561, 7 pages, 2010. View at Publisher · View at Google Scholar
  11. Y. Wang, X. Chen, M. J. Klag, and B. Caballero, “Epidemic of childhood obesity: implications for kidney disease,” Advances in Chronic Kidney Disease, vol. 13, no. 4, pp. 336–351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Sun, Q. Tao, and S. Zhan, “Metabolic syndrome and the development of chronic kidney disease among 118 924 non-diabetic Taiwanese in a retrospective cohort: original Article,” Nephrology, vol. 15, no. 1, pp. 84–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Hoehner, K. J. Greenlund, S. Rith-Najarian, M. L. Casper, and W. M. McClellan, “Association of the insulin resistance syndrome and microalbuminuria among nondiabetic native Americans. The Inter-Tribal Heart Project,” Journal of the American Society of Nephrology, vol. 13, no. 6, pp. 1626–1634, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Chen, P. Muntner, L. L. Hamm et al., “The metabolic syndrome and chronic kidney disease in U.S. adults,” Annals of Internal Medicine, vol. 140, no. 3, pp. 167–I39, 2004. View at Google Scholar · View at Scopus
  15. C. L. Chou and TE. C. Fang, “Incidental chronic kidney disease in metabolic syndrome,” Tzu Chi Medical Journal, vol. 22, no. 1, pp. 11–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kundhal and C. E. Lok, “Clinical epidemiology of cardiovascular disease in chronic kidney disease,” Nephron—Clinical Practice, vol. 101, no. 2, pp. c47–c52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ryu, Y. Chang, H. Y. Woo et al., “Time-dependent association between metabolic syndrome and risk of CKD in Korean men without hypertension or diabetes,” American Journal of Kidney Diseases, vol. 53, no. 1, pp. 59–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Chawla, T. Greene, G. J. Beck et al., “Hyperlipidemia and long-term outcomes in nondiabetic chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 9, pp. 1582–1587, 2010. View at Publisher · View at Google Scholar
  19. J. Lea, D. Cheek, D. Thornley-Brown et al., “Metabolic syndrome, proteinuria, and the risk of progressive CKD in hypertensive African Americans,” American Journal of Kidney Diseases, vol. 51, no. 5, pp. 732–740, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Muntner, J. Coresh, J. C. Smith, J. Eckfeldt, and M. J. Klag, “Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study,” Kidney International, vol. 58, no. 1, pp. 293–301, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Zoccali, “Overweight, obesity and metabolic alterations in chronic kidney disease,” Prilozi, vol. 30, no. 2, pp. 17–31, 2009. View at Google Scholar · View at Scopus
  22. M. Kurella, J. C. Lo, and G. M. Chertow, “Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults,” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 2134–2140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. S. Choi, S. H. Ryu, and K. B. Lee, “The relationship of microalbuminuria with metabolic syndrome,” Nephron—Clinical Practice, vol. 104, no. 2, pp. c85–c93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Ninomiya, Y. Kiyohara, M. Kubo et al., “Metabolic syndrome and CKD in a general Japanese population: the Hisayama Study,” American Journal of Kidney Diseases, vol. 48, no. 3, pp. 383–391, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Tanaka, Y. Shiohira, Y. Uezu, A. Higa, and K. Iseki, “Metabolic syndrome and chronic kidney disease in Okinawa, Japan,” Kidney International, vol. 69, no. 2, pp. 369–374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Chen, D. Gu, C. S. Chen et al., “Association between the metabolic syndrome and chronic kidney disease in Chinese adults,” Nephrology Dialysis Transplantation, vol. 22, no. 4, pp. 1100–1106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Hao, T. Konta, S. Takasaki et al., “The association between microalbuminuria and metabolic syndrome in the general population in Japan: the Takahata study,” Internal Medicine, vol. 46, no. 7, pp. 341–346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Rashidi, A. Ghanbarian, and F. Azizi, “Are patients who have metabolic syndrome without diabetes at risk for developing chronic kidney disease? Evidence based on data from a large cohort screening population,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 5, pp. 976–983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Tozawa, C. Iseki, K. Tokashiki et al., “Metabolic syndrome and risk of developing chronic kidney disease in Japanese adults,” Hypertension Research, vol. 30, no. 10, pp. 937–943, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Zhang, L. Zuo, F. Wang et al., “Metabolic syndrome and chronic kidney disease in a Chinese population aged 40 years and older,” Mayo Clinic Proceedings, vol. 82, no. 7, pp. 822–827, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Kawamoto, K. Kohara, Y. Tabara, and T. Miki, “An association between metabolic syndrome and the estimated glomerular filtration rate,” Internal Medicine, vol. 47, no. 15, pp. 1399–1406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. O. Y. Luk, W. Y. So, R. C. W. Ma et al., “Metabolic syndrome predicts new onset of chronic kidney disease in 5,829 patients with type 2 diabetes A 5-year prospective analysis of the Hong Kong diabetes registry,” Diabetes Care, vol. 31, no. 12, pp. 2357–2361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. G. M. Reaven, “Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Google Scholar · View at Scopus
  34. H.-J. Tsai, C.-F. Hsiao, L.-T. Ho et al., “Genetic variants of human urea transporter-2 are associated with metabolic syndrome in Asian population,” Clinica Chimica Acta, vol. 411, no. 23-24, pp. 2009–2013, 2010. View at Publisher · View at Google Scholar
  35. YI. C. Chang, Y. F. Chiu, K. C. Shih et al., “Common PCSK1 haplotypes are associated with obesity in the Chinese population,” Obesity, vol. 18, no. 7, pp. 1404–1409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. W. H. H. Sheu, Y. D. I. Chen, C. Y. Yu et al., “C-reactive protein gene polymorphism 1009A>G is associated with serum CRP levels in Chinese men: a TCVGHAGE study,” Clinica Chimica Acta, vol. 382, no. 1-2, pp. 117–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. K. D. Wu, C. F. Hsiao, L. T. Ho et al., “Clustering and heritability of insulin resistance in Chinese and Japanese hypertensive families: a Stanford-Asian Pacific Program in hypertension and insulin resistance sibling study,” Hypertension Research, vol. 25, no. 4, pp. 529–536, 2002. View at Google Scholar · View at Scopus
  38. K. G. M. M. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation,” Diabetic Medicine, vol. 15, no. 7, pp. 539–553, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Google Scholar · View at Scopus
  40. K. G. M. M. Alberti, P. Zimmet, and J. Shaw, “The metabolic syndrome—a new worldwide definition,” Lancet, vol. 366, no. 9491, pp. 1059–1062, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. C. C. Lin, C. S. Liu, C. I. Li et al., “The relation of metabolic syndrome according to five definitions to cardiovascular risk factors—a population-based study,” BMC Public Health, vol. 9, article 484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. H. Hsieh, YI. J. Hung, DU. A. Wu et al., “Impact of clinical characteristics of individual metabolic syndrome on the severity of insulin resistance in Chinese adults,” Journal of Korean Medical Science, vol. 22, no. 1, pp. 74–80, 2007. View at Google Scholar · View at Scopus
  43. S. Y. Lin and W. H. H. Sheu, “An emerging link between insulin resistance and inflammation,” Journal of the Chinese Medical Association, vol. 69, no. 6, pp. 245–247, 2006. View at Google Scholar · View at Scopus
  44. M. W. Lin, C. M. Hwu, Y. H. Huang et al., “Directly measured insulin resistance and the assessment of clustered cardiovascular risks in hypertension,” American Journal of Hypertension, vol. 19, no. 11, pp. 1118–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. C. H. Chang, YI. M. Chen, YA. W. Chuang et al., “Relationship between hyperuricemia (HUC) and metabolic syndrome (MS) in institutionalized elderly men,” Archives of Gerontology and Geriatrics, vol. 49, supplement 2, pp. S46–S49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. H. Sung, S. Y. Chuang, W. H. H. Sheu, W. J. Lee, P. Chou, and C. H. Chen, “Relation of adiponectin and high-sensitivity C-reactive protein to pulse-wave velocity and N-terminal pro-B-type natriuretic peptide in the general population,” American Journal of Cardiology, vol. 103, no. 10, pp. 1411–1416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. W. H. H. Sheu and Y. H. Tseng, “Uric acid: an additional component of metabolic syndrome?” Journal of the Chinese Medical Association, vol. 69, no. 3, pp. 99–100, 2006. View at Google Scholar · View at Scopus
  48. Y. Y. Chou, W. H. H. Sheu, Y. J. Tang et al., “Plasminogen activator inhibitor type 1 (PAI-1) is a valuable biomarker for predicting the metabolic syndrome (MS) in institutionalized elderly residents in Taiwan,” Archives of Gerontology and Geriatrics, vol. 49, supplement 2, pp. S41–S45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Balkau and M. A. Charles, “Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR),” Diabetic Medicine, vol. 16, no. 5, pp. 442–443, 1999. View at Publisher · View at Google Scholar
  50. B. Chen, D. Yang, Y. U. Chen, W. Xu, BO. Ye, and Z. Ni, “The prevalence of microalbuminuria and its relationships with the components of metabolic syndrome in the general population of China,” Clinica Chimica Acta, vol. 411, no. 9-10, pp. 705–709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Ritz, “Metabolic syndrome and kidney disease,” Blood Purification, vol. 26, no. 1, pp. 59–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Przybylowski, J. Malyszko, and J. Malyszko, “Kidney function assessed by eGFR, cystatin C and NGAL (neutrophil gelatinase-associated lipocalin) in relation to age in heart allograft recipients,” Medical Science Monitor, vol. 16, no. 9, pp. CR440–CR444, 2010. View at Google Scholar
  53. S. M. Bagshaw and R. Bellomo, “Cystatin C in acute kidney injury,” Current Opinion in Critical Care, vol. 16, no. 6, pp. 533–539, 2010. View at Publisher · View at Google Scholar
  54. L. Vigil, M. Lopez, E. Condés et al., “Cystatin C is associated with the metabolic syndrome and other cardiovascular risk factors in a hypertensive population,” Journal of the American Society of Hypertension, vol. 3, no. 3, pp. 201–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. S. H. Lee, S. A. Park, S. H. Ko et al., “Insulin resistance and inflammation may have an additional role in the link between cystatin C and cardiovascular disease in type 2 diabetes mellitus patients,” Metabolism, vol. 59, no. 2, pp. 241–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Uchino, “Creatinine,” Current Opinion in Critical Care, vol. 16, no. 6, pp. 562–567, 2010. View at Google Scholar
  57. G. Parlongo and C. Zoccali, “Obesity and chronic kidney diseaseL'obesità corne causa di insuff icienza renale,” Recenti Progressi in Medicina, vol. 101, no. 2, pp. 57–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Coresh, B. C. Astor, T. Greene, G. Eknoyan, and A. S. Levey, “Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey,” American Journal of Kidney Diseases, vol. 41, no. 1, pp. 1–12, 2003. View at Google Scholar · View at Scopus
  59. P. K. Whelton, T. V. Perneger, J. He, and M. J. Klag, “The role of blood pressure as a risk factor for renal disease: a review of the epidemiologic evidence,” Journal of Human Hypertension, vol. 10, no. 10, pp. 683–689, 1996. View at Google Scholar · View at Scopus
  60. M. K. Haroun, B. G. Jaar, S. C. Hoffman, G. W. Comstock, M. J. Klag, and J. Coresh, “Risk factors for chronic kidney disease: a prospective study of 23,534 men and women in Washington County, Maryland,” Journal of the American Society of Nephrology, vol. 14, no. 11, pp. 2934–2941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. P. H. Lee, H. Y. Chang, C. W. Tung et al., “Hypertriglyceridemia: an independent risk factor of chronic kidney disease in Taiwanese adults,” American Journal of the Medical Sciences, vol. 338, no. 3, pp. 185–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Halbesma, D. S. Kuiken, A. H. Brantsma et al., “Macroalbuminuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening,” Journal of the American Society of Nephrology, vol. 17, no. 9, pp. 2582–2590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Basi and J. B. Lewis, “Microalbuminuria as a target to improve cardiovascular and renal outcomes,” American Journal of Kidney Diseases, vol. 47, no. 6, pp. 927–946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Okura, M. Jotoku, J. Irita et al., “Association between cystatin C and inflammation in patients with essential hypertension,” Clinical and Experimental Nephrology, vol. 14, no. 6, pp. 584–588, 2010. View at Publisher · View at Google Scholar
  65. M. G. Shlipak, R. Katz, M. J. Sarnak et al., “Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease,” Annals of Internal Medicine, vol. 145, no. 4, pp. 237–246, 2006. View at Google Scholar · View at Scopus
  66. V. Menon, M. G. Shlipak, X. Wang et al., “Cystatin C as a risk factor for outcomes in chronic kidney disease,” Annals of Internal Medicine, vol. 147, no. 1, pp. 19–27, 2007. View at Google Scholar · View at Scopus
  67. J. Surendar, K. Indulekha, V. Aravindhan, A. Ganesan, and V. Mohan, “Association of cystatin-C with metabolic syndrome in normal glucose-tolerant subjects (CURES-97),” Diabetes Technology and Therapeutics, vol. 12, no. 11, pp. 907–912, 2010. View at Publisher · View at Google Scholar
  68. C. Manrique, G. Lastra, M. Gardner, and J. R. Sowers, “The renin angiotensin aldosterone system in hypertension: roles of insulin resistance and oxidative stress,” Medical Clinics of North America, vol. 93, no. 3, pp. 569–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Z. Duan, M. G. Usher, and R. M. Mortensen, “PPARs: the vasculature, inflammation and hypertension,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 2, pp. 128–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. P. K. Mishra, N. Tyagi, U. Sen, I. G. Joshua, and S. C. Tyagi, “Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol,” Cardiovascular Diabetology, vol. 9, article 49, 2010. View at Publisher · View at Google Scholar
  71. J. Wesoly, K. Sikorski, C.-K. Lee, and H. A.R. Bluyssen, “Suppressor of cytokine signaling and accelerated atherosclerosis in kidney disease,” Acta Biochimica Polonica, vol. 57, no. 3, pp. 251–260, 2010. View at Google Scholar
  72. Y. Wu, Z. Liu, Z. Xiang et al., “Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples,” Endocrinology, vol. 147, no. 1, pp. 44–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. A. Lazar, “How obesity causes diabetes: not a tall tale,” Science, vol. 307, no. 5708, pp. 373–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. A. A. Eddy and A. B. Fogo, “Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action,” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 2999–3012, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Kurata, H. Nishizawa, S. Kihara et al., “Blockade of angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation,” Kidney International, vol. 70, no. 10, pp. 1717–1724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Lubrano, E. Travasso, C. Raggi, G. Guido, R. Masciangelo, and M. Elli, “Blood pressure load, proteinuria and renal function in pre-hypertensive children,” Pediatric Nephrology, vol. 24, no. 4, pp. 823–831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Hopkins and G. L. Bakris, “Hypertension goals in advanced-stage kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 4, supplement 1, pp. S92–S94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. S. I. Hallan and P. Stevens, “Screening for chronic kidney disease: which strategy?” Journal of Nephrology, vol. 23, no. 2, pp. 147–155, 2010. View at Google Scholar · View at Scopus
  79. A. J. Collins, J. A. Vassalotti, C. Wang et al., “Who Should Be Targeted for CKD Screening? Impact of Diabetes, Hypertension, and Cardiovascular Disease,” American Journal of Kidney Diseases, vol. 53, supplement 3, pp. S71–S77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. H.-C. Ou, W.-J. Lee, S.-D. Lee et al., “Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway,” Toxicology and Applied Pharmacology, vol. 248, no. 2, pp. 134–143, 2010. View at Publisher · View at Google Scholar
  81. H. C. Ou, F. P. Chou, T. M. Lin, C. H. Yang, and W. H. H. Sheu, “Protective effects of eugenol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells,” Food and Chemical Toxicology, vol. 44, no. 9, pp. 1485–1495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. H. C. Ou, F. P. Chou, T. M. Lin, C. H. Yang, and W. H. H. Sheu, “Protective effects of honokiol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells,” Chemico-Biological Interactions, vol. 161, no. 1, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Ismail-Beigi, T. Craven, M. A. Banerji et al., “Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial,” The Lancet, vol. 376, no. 9739, pp. 419–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998. View at Google Scholar
  85. R. R. Holman, S. K. Paul, M. A. Bethel, D. R. Matthews, and H. A. W. Neil, “10-Year follow-up of intensive glucose control in type 2 diabetes,” New England Journal of Medicine, vol. 359, no. 15, pp. 1577–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. P. A. Sarafidis and G. L. Bakris, “Protection of the kidney by thiazolidinediones: an assessment from bench to bedside,” Kidney International, vol. 70, no. 7, pp. 1223–1233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Matsumoto, E. Noguchi, K. Ishida, T. Kobayashi, N. Yamada, and K. Kamata, “Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes,” American Journal of Physiology, vol. 295, no. 3, pp. H1165–H1176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Finkelstein, A. Joshi, and M. K. Hise, “Association of physical activity and renal function in subjects with and without metabolic syndrome: a review of the Third National Health and Nutrition Examination Survey (NHANES III),” American Journal of Kidney Diseases, vol. 48, no. 3, pp. 372–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. S. K. Fredrickson, T. J. Ferro, and A. C. Schutrumpf, “Disappearance of microalbuminuria in a patient with type 2 diabetes and the metabolic syndrome in the setting of an intense exercise and dietary program with sustained weight reduction,” Diabetes Care, vol. 27, no. 7, pp. 1754–1755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. K. A. Meckling and R. Sherfey, “A randomized trial of a hypocaloric high-protein diet, with and without exercise, on weight loss, fitness, and markers of the Metabolic Syndrome in overweight and obese women,” Applied Physiology, Nutrition and Metabolism, vol. 32, no. 4, pp. 743–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. T. D. Filippatos, D. N. Kiortsis, E. N. Liberopoulos, M. Georgoula, D. P. Mikhailidis, and M. S. Elisaf, “Effect of orlistat, micronised fenofibrate and their combination on metabolic parameters in overweight and obese patients with the metabolic syndrome: the FenOrli study,” Current Medical Research and Opinion, vol. 21, no. 12, article 3219, pp. 1997–2006, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. I. J. Hung, Y. C. Chen, D. Pei et al., “Sibutramine improves insulin sensitivity without alteration of serum adiponectin in obese subjects with Type 2 diabetes,” Diabetic Medicine, vol. 22, no. 8, pp. 1024–1030, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. Å. Lindholm, M. Bixo, I. Björn et al., “Effect of sibutramine on weight reduction in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial,” Fertility and Sterility, vol. 89, no. 5, pp. 1221–1228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Chagnac, T. Weinstein, M. Herman, J. Hirsh, U. Gafter, and Y. Ori, “The effects of weight loss on renal function in patients with severe obesity,” Journal of the American Society of Nephrology, vol. 14, no. 6, pp. 1480–1486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. H. N. Ibrahim and M. L. Weber, “Weight loss: a neglected intervention in the management of chronic kidney disease,” Current Opinion in Nephrology and Hypertension, vol. 19, no. 6, pp. 534–538, 2010. View at Publisher · View at Google Scholar
  96. S. D. Navaneethan, H. Yehnert, F. Moustarah, M. J. Schreiber, P. R. Schauer, and S. Beddhu, “Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 10, pp. 1565–1574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. H. R. Black, B. Davis, J. Barzilay et al., “Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or lisinopril as initial treatment for hypertension: a report from the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT),” Diabetes Care, vol. 31, no. 2, pp. 353–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Fujita, K. Ando, H. Nishimura et al., “Antiproteinuric effect of the calcium channel blocker cilnidipine added to renin-angiotensin inhibition in hypertensive patients with chronic renal disease,” Kidney International, vol. 72, no. 12, pp. 1543–1549, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Miwa, T. Tsuchihashi, Y. Ohta et al., “Antiproteinuric effect of cilnidipine in hypertensive japanese treated with renin-angiotensin-system inhibitors—a multicenter, open, randomized trial using 24-hour urine collection,” Clinical and Experimental Hypertension, vol. 32, no. 6, pp. 400–405, 2010. View at Publisher · View at Google Scholar
  100. L. J. Appel, J. T. Wright Jr., T. Greene et al., “Intensive blood-pressure control in hypertensive chronic kidney disease,” New England Journal of Medicine, vol. 363, no. 10, pp. 918–929, 2010. View at Publisher · View at Google Scholar
  101. J. T. Wright, G. Bakris, T. Greene et al., “Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial,” Journal of the American Medical Association, vol. 288, no. 19, pp. 2421–2431, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Omae, T. Ogawa, and K. Nitta, “Therapeutic advantage of angiotensin-converting enzyme inhibitors in patients with proteinuric chronic kidney disease,” Heart and Vessels, vol. 25, no. 3, pp. 203–208, 2010. View at Publisher · View at Google Scholar
  103. T. Matsui, S. I. Yamagishi, S. Ueda, K. Fukami, and S. Okuda, “Irbesartan inhibits albumin-elicited proximal tubular cell apoptosis and injury In vitro,” Protein and Peptide Letters, vol. 17, no. 1, pp. 74–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Kunz, C. Friedrich, M. Wolbers, and J. F. E. Mann, “Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin-angiotensin system on proteinuria in renal disease,” Annals of Internal Medicine, vol. 148, no. 1, pp. 30–48, 2008. View at Google Scholar · View at Scopus
  105. X. Ruan, F. Zheng, and Y. Guan, “PPARs and the kidney in metabolic syndrome,” American Journal of Physiology, vol. 294, no. 5, pp. F1032–F1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. T. M. Lee, S. F. Su, and C. H. Tsai, “Effect of pravastatin on proteinuria in patients with well-controlled hypertension,” Hypertension, vol. 40, no. 1, pp. 67–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. W. H. Sheu, Y. T. Chen, and W. J. Lee, “Improvement in endothelial dysfunction with LDL cholesterol level < 80 mg/dl in type 2 diabetic patients,” Diabetes Care, vol. 24, no. 8, pp. 1499–1501, 2001. View at Google Scholar · View at Scopus
  108. I. T. Lee, W. J. Lee, H. C. Ou, C. N. Huang, and W. H. H. Sheu, “Metabolic syndrome abating the beneficial effect of pravastatin treatment on adhesion of endothelium by monocytes in subjects with hypercholesterolemia,” Metabolism, vol. 58, no. 3, pp. 416–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. W. J. Lee, W. L. Lee, Y. J. Tang et al., “Early Improvements in insulin sensitivity and inflammatory markers are induced by pravastatin in nondiabetic subjects with hypercholesterolemia,” Clinica Chimica Acta, vol. 390, no. 1-2, pp. 49–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Lewis, R. Haynes, and M. J. Landray, “Lipids in chronic kidney disease,” Journal of Renal Care, vol. 36, no. 1, pp. 27–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Ronco, M. Haapio, A. A. House, N. Anavekar, and R. Bellomo, “Cardiorenal syndrome,” Journal of the American College of Cardiology, vol. 52, no. 19, pp. 1527–1539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Bakris, J. Vassalotti, E. Ritz et al., “National kidney foundation consensus conference on cardiovascular and kidney diseases and diabetes risk: an integrated therapeutic approach to reduce events,” Kidney International, vol. 78, no. 8, pp. 726–736, 2010. View at Publisher · View at Google Scholar
  113. Y. Iwashima, T. Horio, K. Kamide et al., “Additive interaction of metabolic syndrome and chronic kidney disease on cardiac hypertrophy, and risk of cardiovascular disease in hypertension,” American Journal of Hypertension, vol. 23, no. 3, pp. 290–298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. D. Martins et al., “Renal dysfunction, metabolic syndrome and cardiovascular disease mortality,” Journal of Nutrition and Metabolism, vol. 2010, Article ID 167162, 8 pages, 2010. View at Publisher · View at Google Scholar