Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2011 (2011), Article ID 681565, 30 pages
http://dx.doi.org/10.1155/2011/681565
Research Article

Coexistence of the Bandcount-Adding and Bandcount-Increment Scenarios

IPVS, University of Stuttgart, Universitätstrasse 38, 70569 Stuttgart, Germany

Received 18 May 2010; Revised 8 January 2011; Accepted 9 January 2011

Academic Editor: J. Kurths

Copyright © 2011 Viktor Avrutin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, IEEE Press, 2001.
  2. Z. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems, vol. 44 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, River Edge, NJ, USA, 2003. View at Zentralblatt MATH
  3. M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163 of Applied Mathematical Sciences, Springer, 2008.
  4. D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, vol. 70 of Nonlinear Science A, World Scientific, 2010.
  5. M. Mita, M. Arai, S. Tensaka, D. Kobayashi, and H. Fujita, “A micromachined impact microactuator driven by electrostatic force,” Journal of Microelectromechanical Systems, vol. 12, no. 1, pp. 37–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Zhao, H. Dankowicz, C. K. Reddy, and A. H. Nayfeh, “Modeling and simulation methodology for impact microactuators,” Journal of Micromechanics and Microengineering, vol. 14, no. 6, pp. 775–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Karner, “The simplified Fermi accelerator in classical and quantum mechanics,” Journal of Statistical Physics, vol. 77, no. 3-4, pp. 867–879, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. F. Saif, I. Bialynicki-Birula, M. Fortunato, and W. P. Schleich, “Fermi accelerator in atom optics,” Physical Review A, vol. 58, no. 6, pp. 4779–4783, 1998. View at Google Scholar · View at Scopus
  9. E. D. Leonel and P. V. E. McClintock, “Dissipative area-preserving one-dimensional Fermi accelerator model,” Physical Review E, vol. 73, no. 6, Article ID 066223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Fermi, “On the origin of the cosmic radiation,” Physical Review, vol. 75, no. 8, pp. 1169–1174, 1949. View at Publisher · View at Google Scholar · View at Scopus
  11. A. B. Nordmark, “Non-periodic motion caused by grazing incidence in an impact oscillator,” Journal of Sound and Vibration, vol. 145, no. 2, pp. 279–297, 1991. View at Google Scholar · View at Scopus
  12. A. B. Nordmark, “Universal limit mapping in grazing bifurcations,” Physical Review E, vol. 55, no. 1, pp. 266–270, 1997. View at Google Scholar · View at Scopus
  13. J. Molenaar, J. G. de Weger, and W. van de Water, “Mappings of grazing-impact oscillators,” Nonlinearity, vol. 14, no. 2, pp. 301–321, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. P. Jain and S. Banerjee, “Border-collision bifurcations in one-dimensional discontinuous maps,” International Journal of Bifurcation and Chaos, vol. 13, no. 11, pp. 3341–3351, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. H. E. Nusse and J. A. Yorke, “Border-collision bifurcations including “period two to period three” for piecewise smooth systems,” Physica D, vol. 57, no. 1-2, pp. 39–57, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. H. E. Nusse and J. A. Yorke, “Border-collision bifurcations for piecewise smooth one-dimensional maps,” International Journal of Bifurcation and Chaos, vol. 5, no. 1, pp. 189–207, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. V. Avrutin, M. Schanz, and S. Banerjee, “Codimension-three bifurcations: explanation of the complex one-,two-, and three-dimensional bifurcation structures in nonsmooth maps,” Physical Review E, vol. 75, no. 6, Article ID 066205, 7 pages, 2007. View at Publisher · View at Google Scholar
  18. Yu. L. Maistrenko, V. L. Maistrenko, and S. I. Vikul, “Bifurcations of attracting cycles of piecewise linear interval maps,” Journal of Technical Physics, vol. 37, no. 3-4, pp. 367–370, 1996. View at Google Scholar
  19. Yu. L. Maistrenko, V. L. Maistrenko, and S. I. Vikul, “On period-adding sequences of attracting cycles in piecewise linear maps,” Chaos, Solitons & Fractals, vol. 9, no. 1-2, pp. 67–75, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. V. Avrutin, B. Eckstein, and M. Schanz, “The bandcount increment scenario. I. Basic structures,” Proceedings of The Royal Society of London. Series A, vol. 464, no. 2095, pp. 1867–1883, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. V. Avrutin, B. Eckstein, and M. Schanz, “The bandcount increment scenario. II. Interior structures,” Proceedings of The Royal Society of London. Series A, vol. 464, no. 2097, pp. 2247–2263, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. V. Avrutin, B. Eckstein, and M. Schanz, “The bandcount increment scenario. III. Deformed structures,” Proceedings of The Royal Society of London. Series A, vol. 465, no. 2101, pp. 41–57, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. V. Avrutin and M. Schanz, “On the fully developed bandcount adding scenario,” Nonlinearity, vol. 21, no. 5, pp. 1077–1103, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. V. Avrutin, M. Schanz, and S. Banerjee, “Multi-parametric bifurcations in a piecewise-linear discontinuous map,” Nonlinearity, vol. 19, no. 8, pp. 1875–1906, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. S. Banerjee, J. A. Yorke, and C. Grebogi, “Robust chaos,” Physical Review Letters, vol. 80, no. 14, pp. 3049–3052, 1998. View at Google Scholar · View at Scopus
  26. C. Mira, “Détermination pratique du domaine de stabilité d'un point d'équilibre d'une récurrence non linéaire du deuxième ordre à variable réelle,” Comptes Rendus de l'Académie des Sciences, vol. 261-262, pp. 5314–5317, 1964. View at Google Scholar
  27. C. Mira, “Determination graphique de la frontiére de stabilité dun point d'équilibre dune récurrence nonlinéaire du deuxiéme ordre à variables réelles-application au cas où les seconds membres de la récurrence ne sont pas analytiques,” Comptes Rendus de l'Académie des Sciences, vol. 262, pp. 951–954, 1966. View at Google Scholar
  28. I. Gumowski and C. Mira, “Solutions “chaotiques” bornées d'une récurrence, ou transformation ponctuelle du deuxième ordre, à inverse non unique,” Comptes Rendus de l'Académie des Sciences. Séries A, vol. 285, no. 6, pp. A477–A480, 1977. View at Google Scholar · View at Zentralblatt MATH
  29. I. Gumowski and C. Mira, “Bifurcation déstabilisant une solution chaotique d'un endomorphisme du deuxième ordre,” Comptes Rendus de l'Académie des Sciences. Séries A, vol. 286, no. 9, pp. A427–A430, 1978. View at Google Scholar · View at Zentralblatt MATH
  30. I. Gumowski and C. Mira, Dynamique Chaotique, Transformations Ponctuelles. Transition. Ordre-Désordre, Cepadues Éditions, Toulouse, France, 1980.
  31. C. Grebogi, E. Ott, and J. A. Yorke, “Chaotic attractors in crisis,” Physical Review Letters, vol. 48, no. 22, pp. 1507–1510, 1982. View at Publisher · View at Google Scholar
  32. C. Grebogi, E. Ott, and J. A. Yorke, “Crises, sudden changes in chaotic attractors, and transient chaos,” Physica D, vol. 7, no. 1-3, pp. 181–200, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. D. Stynes and D. M. Heffernan, “Universality and scaling in chaotic attractor-to-chaotic attractor transitions,” Chaos, Solitons & Fractals, vol. 13, no. 6, pp. 1195–1204, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  34. S. H. C. Marcos, S. R. Lopes, and R. L. Viana, “Boundary crises, fractal basin boundaries, and electric power collapses,” Chaos, Solitons & Fractals, vol. 15, no. 2, pp. 417–424, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. F. A. Borotto, A. C.-L. Chian, T. Hada, and E. L. Rempel, “Chaos in driven Alfvén systems: boundary and interior crises,” Physica D, vol. 194, no. 3-4, pp. 275–282, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  36. A. C. L. Chian, F. A. Borotto, E. L. Rempel, and C. Rogers, “Attractor merging crisis in chaotic business cycles,” Chaos, Solitons & Fractals, vol. 24, no. 3, pp. 869–875, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. C.-L. Chian, E. L. Rempel, and C. Rogers, “Complex economic dynamics: chaotic saddle, crisis and intermittency,” Chaos, Solitons & Fractals, vol. 29, no. 5, pp. 1194–1218, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  38. Q. Bi, “Chaos crisis in coupled Duffing's systems with initial phase difference,” Physics Letters A, vol. 369, no. 5-6, pp. 418–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. B. L. Hao, Elementary Symbolic Dynamics and Chaos in Dissipative Systems, World Scientific, Teaneck, NJ, USA, 1989.
  40. C. Mira, L. Gardini, A. Barugola, and J.-C. Cathala, Chaotic Dynamics in Two-Dimensional Noninvertible Maps, vol. 20 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, River Edge, NJ, USA, 1996. View at Publisher · View at Google Scholar
  41. V. Avrutin and M. Schanz, “On multi-parametric bifurcations in a scalar piecewise-linear map,” Nonlinearity, vol. 19, no. 3, pp. 531–552, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  42. J. Farey, “On a curious property of vulgar fractions,” The Philosophical Magazine and Journal, vol. 4, pp. 385–386, 1816. View at Google Scholar
  43. J. C. Lagarias and C. P. Tresser, “A walk along the branches of the extended Farey tree,” IBM Journal of Research and Development, vol. 39, no. 3, pp. 283–294, 1995. View at Publisher · View at Google Scholar
  44. M. A. Stern, “Über eine zahlentheoretische Funktion,” Journal für die reine und angewandte Mathematik, vol. 55, pp. 183–220, 1858. View at Google Scholar
  45. A. Brocot, “Calcul des rouages par approximation, nouvelle méthode,” Revue Chronometrique, vol. 3, pp. 186–194, 1861. View at Google Scholar
  46. I. Sushko and L. Gardini, “Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps,” International Journal of Bifurcation and Chaos, vol. 20, no. 7, pp. 2045–2070, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  47. L. Gardini, F. Tramontana, V. Avrutin, and M. Schanz, “Border-collision bifurcations in 1D piecewise-linear maps and Leonov's approach,” International Journal of Bifurcation and Chaos, vol. 20, no. 10, pp. 3085–3104, 2010. View at Publisher · View at Google Scholar
  48. V. Avrutin, B. Eckstein, and M. Schanz, “On detection of multi-band chaotic attractors,” Proceedings of The Royal Society of London. Series A, vol. 463, no. 2081, pp. 1339–1358, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH