Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2016 (2016), Article ID 2192853, 7 pages
http://dx.doi.org/10.1155/2016/2192853
Research Article

Discovery and Validation of Hypermethylated Markers for Colorectal Cancer

1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China

Received 31 March 2016; Revised 6 June 2016; Accepted 15 June 2016

Academic Editor: Monica Neagu

Copyright © 2016 Jiufeng Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, I. Soerjomataram, R. Dikshit et al., “Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012,” International Journal of Cancer, vol. 136, no. 5, pp. E359–E386, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Shen, S. Wang, Y.-J. Zhang et al., “Genome-wide DNA methylation profiles in hepatocellular carcinoma,” Hepatology, vol. 55, no. 6, pp. 1799–1808, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Botling, K. Edlund, M. Lohr et al., “Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation,” Clinical Cancer Research, vol. 19, no. 1, pp. 194–204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Haller, J. D. Zhang, E. A. Moskalev et al., “Combined DNA methylation and gene expression profiling in gastrointestinal stromal tumors reveals hypomethylation of SPP1 as an independent prognostic factor,” International Journal of Cancer, vol. 136, no. 5, pp. 1013–1023, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. N. T. Potter, P. Hurban, M. N. White et al., “Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma,” Clinical Chemistry, vol. 60, no. 9, pp. 1183–1191, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. F. J. Carmona, D. Azuara, A. Berenguer-Llergo et al., “DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer,” Cancer Prevention Research, vol. 6, no. 7, pp. 656–665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Luo, C.-J. Wong, A. M. Kaz et al., “Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer,” Gastroenterology, vol. 147, no. 2, pp. 418–429.e8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Moiel and J. Thompson, “Early detection of colon cancer-the kaiser permanente northwest 30-year history: how do we measure success? Is it the test, the number of tests, the stage, or the percentage of screen-detected patients?” The Permanente Journal, vol. 15, no. 4, pp. 30–38, 2011. View at Google Scholar
  9. E. R. Fearon and B. Vogelstein, “A genetic model for colorectal tumorigenesis,” Cell, vol. 61, no. 5, pp. 759–767, 1990. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wang, Y.-Y. Kuang, and X.-T. Hu, “Advances in epigenetic biomarker research in colorectal cancer,” World Journal of Gastroenterology, vol. 20, no. 15, pp. 4276–4287, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. W.-D. Chen, Z. J. Han, J. Skoletsky et al., “Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene,” Journal of the National Cancer Institute, vol. 97, no. 15, pp. 1124–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M.-B. W. Ørntoft, H. J. Nielsen, T. F. Ørntoft, and C. L. Andersen, “Performance of the colorectal cancer screening marker Sept9 is influenced by age, diabetes and arthritis: a nested case-control study,” BMC Cancer, vol. 15, no. 1, article 819, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Jin, Q. Kang, X. Wang et al., “Performance of a second-generation methylated SEPT9 test in detecting colorectal neoplasm,” Journal of Gastroenterology and Hepatology (Australia), vol. 30, no. 5, pp. 830–833, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Adler, S. Geiger, A. Keil et al., “Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany,” BMC Gastroenterology, vol. 14, article 183, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. V. A. Naumov, E. V. Generozov, N. B. Zaharjevskaya et al., “Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips,” Epigenetics, vol. 8, no. 9, pp. 921–934, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Hinoue, D. J. Weisenberger, C. P. E. Lange et al., “Genome-scale analysis of aberrant DNA methylation in colorectal cancer,” Genome Research, vol. 22, no. 2, pp. 271–282, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Tripodi, A. Piscone, G. Borsani et al., “Molecular cloning of an adducin-like protein: evidence of a polymorphism in the normotensive and hypertensive rats of the Milan strain,” Biochemical and Biophysical Research Communications, vol. 177, no. 3, pp. 939–947, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. A. F. Muro, M. L. Marro, S. Gajović, F. Porro, L. Luzzatto, and F. E. Baralle, “Mild spherocytic hereditary elliptocytosis and altered levels of α- and γ-adducins in β-adducin-deficient mice,” Blood, vol. 95, no. 12, pp. 3978–3985, 2000. View at Google Scholar · View at Scopus
  19. D. M. Gilligan, L. Lozovatsky, B. Gwynn, C. Brugnara, N. Mohandas, and L. L. Peters, “Targeted disruption of the β adducin gene (Add2) causes red blood cell spherocytosis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10717–10722, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. W. Moon, S. K. Lee, J. O. Lee et al., “Identification of novel hypermethylated genes and demethylating effect of vincristine in colorectal cancer,” Journal of Experimental and Clinical Cancer Research, vol. 33, no. 1, article 4, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Cebola, J. Custodio, M. Muñoz et al., “Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer,” Clinical Epigenetics, vol. 7, no. 1, article 74, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Dedeurwaerder, M. Defrance, E. Calonne, H. Denis, C. Sotiriou, and F. Fuks, “Evaluation of the Infinium Methylation 450K technology,” Epigenomics, vol. 3, no. 6, pp. 771–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Clark, P. Palta, C. J. Joyce et al., “A comparison of the whole genome approach of MeDIP-Seq to the targeted approach of the infinium humanmethylation450 BeadChip® for methylome profiling,” PLoS ONE, vol. 7, no. 11, Article ID e50233, 2012. View at Publisher · View at Google Scholar · View at Scopus