Table of Contents Author Guidelines Submit a Manuscript
Dermatology Research and Practice
Volume 2010, Article ID 185687, 6 pages
http://dx.doi.org/10.1155/2010/185687
Review Article

Angiogenesis and Progression in Human Melanoma

1Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari I-70124, Italy
2Department of Human Anatomy and Histology, University of Bari Medical School, Bari I-70124, Italy

Received 21 December 2009; Accepted 6 April 2010

Academic Editor: Keith Hoek

Copyright © 2010 R. Ria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Ribatti, A. Vacca, and F. Dammacco, “VEGF and tumor progression in human melanoma,” in VEGF and Cancer, J. H. Harmey, Ed., pp. 48–53, Eurekah.com and Kluwer Academic/Plenum, 2004. View at Google Scholar
  2. D. Ribatti, A. Vacca, and F. Dammacco, “The role of the vascular phase in solid tumor growth: a historical review,” Neoplasia, vol. 1, no. 4, pp. 293–302, 1999. View at Google Scholar · View at Scopus
  3. J. Folkman, “Tumor angiogenesis,” in The Molecular Basis of Cancer, J. Mwendelsohn, P. M. Howley, M. A. Israel, and L. A. Liotta, Eds., pp. 206–232, Saunders, Philadelphia, Pa, USA, 1995. View at Google Scholar
  4. D. Ribatti, B. Nico, E. Crivellato, A. M. Roccaro, and A. Vacca, “The history of the angiogenic switch concept,” Leukemia, vol. 21, no. 1, pp. 44–52, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. Breslow, “Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma,” Annals of Surgery, vol. 172, no. 5, pp. 902–908, 1970. View at Google Scholar · View at Scopus
  6. D. D. Heasley, S. Toda, and M. C. Mihm Jr., “Pathology of malignant melanoma,” Surgical Clinics of North America, vol. 76, no. 6, pp. 1223–1255, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Vacca, D. Ribatti, L. Roncali et al., “Melanocyte tumor progression is associated with changes in angiogenesis and expression of the 67-kilodalton laminin receptor,” Cancer, vol. 72, no. 2, pp. 455–461, 1993. View at Google Scholar · View at Scopus
  8. G. H. Mahabeleshwar and T. V. Byzova, “Angiogenesis in melanoma,” Seminars in Oncology, vol. 34, no. 6, pp. 555–565, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. Vacca, R. Ria, D. Ribatti, M. Bruno, and F. Dammacco, “Angiogenesis and tumor progression in human melanoma,” Recenti Progressi in Medicina, vol. 91, no. 11, pp. 581–587, 2000. View at Google Scholar · View at Scopus
  10. A. Srivastava, P. Laidler, R. P. Davies, K. Horgan, and L. E. Hughes, “The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study,” American Journal of Pathology, vol. 133, no. 2, pp. 419–423, 1988. View at Google Scholar · View at Scopus
  11. A. Srivastava, L. E. Hughes, J. P. Woodcock, and P. Laidler, “Vascularity in cutaneous melanoma detected by Doppler sonography and histology: correlation with tumour behaviour,” British Journal of Cancer, vol. 59, no. 1, pp. 89–91, 1989. View at Google Scholar · View at Scopus
  12. D. Ribatti, B. Nico, C. Floris et al., “Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma,” Oncology Reports, vol. 14, no. 1, pp. 81–84, 2005. View at Google Scholar · View at Scopus
  13. H. Erhard, F. J. R. Rietveld, M. C. van Altena et al., “Transition of horizontal to vertical growth phase melanoma is accompanied by induction of vascular endothelial growth factor expression and angiogenesis,” Melanoma Research, vol. 7, no. 2, pp. S19–S26, 1997. View at Google Scholar · View at Scopus
  14. J. Marcoval, A. Moreno, J. Graells et al., “Angiogenesis and malignant melanoma. Angiogenesis is related to the development of vertical (tumorigenic) growth phase,” Journal of Cutaneous Pathology, vol. 24, no. 4, pp. 212–218, 1997. View at Google Scholar · View at Scopus
  15. P. Salven, P. Heikkilä, and H. Joensuu, “Enhanced expression of vascular endothelial growth factor in metastatic melanoma,” British Journal of Cancer, vol. 76, no. 7, pp. 930–934, 1997. View at Google Scholar · View at Scopus
  16. R. Sala, W. A. Jefferies, B. B. Walker et al., “The human melanoma associated protein melanotransferrin promotes endothelial cell migration and angiogenesis in vivo,” European Journal of Cell Biology, vol. 81, no. 11, pp. 599–607, 2002. View at Google Scholar · View at Scopus
  17. D. Ribatti, A. Vacca, R. Ria et al., “Neovascularisation, expression of fibroblast growth factor-2, and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma,” European Journal of Cancer, vol. 39, no. 5, pp. 666–674, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Odorisio, F. Cianfarani, C. M. Failla, and G. Zambruno, “The placenta growth factor in skin angiogenesis,” Journal of Dermatological Science, vol. 41, no. 1, pp. 11–19, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. Donnini, M. R. Machein, K. H. Plate, and H. A. Weich, “Expression and localization of placenta growth factor and P1GF receptors in human meningiomas,” Journal of Pathology, vol. 189, no. 1, pp. 66–71, 1999. View at Google Scholar · View at Scopus
  20. A. Luttun, M. Autiero, M. Tjwa, and P. Carmeliet, “Genetic dissection of tumor angiogenesis: are PlGF and VEGFR-1 novel anti-cancer targets?” Biochimica et Biophysica Acta, vol. 1654, no. 1, pp. 79–94, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Bar-Eli, “Role of interleukin-8 in tumor growth and metastasis of human melanoma,” Pathobiology, vol. 67, no. 1, pp. 12–18, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. Mahler, S. Huang, M. Tabrizi, and G. M. Bell, “Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study,” Chest, vol. 126, no. 3, pp. 926–934, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. V. O. Melnikova and M. Bar-Eli, “Bioimmunotherapy for melanoma using fully human antibodies targeting MCAM/MUC18 and IL-8,” Pigment Cell Research, vol. 19, no. 5, pp. 395–405, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. G. Liu, F. Zhang, J. Lee, and Z. Dong, “Selective induction of interleukin-8 expression in metastatic melanoma cells by transforming growth factor-β1,” Cytokine, vol. 31, no. 3, pp. 241–249, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. K. Bosserhoff, “Novel biomarkers in malignant melanoma,” Clinica Chimica Acta, vol. 367, no. 1-2, pp. 28–35, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. S. Kuphal, R. Bauer, and A.-K. Bosserhoff, “Integrin signaling in malignant melanoma,” Cancer and Metastasis Reviews, vol. 24, no. 2, pp. 195–222, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. U. B. Hofmann, J. R. Westphal, G. N. P. Van Muijen, and D. J. Ruiter, “Matrix metalloproteinases in human melanoma,” Journal of Investigative Dermatology, vol. 115, no. 3, pp. 337–344, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. E. Kerkela and U. Saarialho-Kere, “Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer,” Experimental Dermatology, vol. 12, no. 2, pp. 109–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Nikkola, P. Vihinen, M.-S. Vuoristo, P. Kellokumpu-Lehtinen, V.-M. Kahari, and S. Pyrhönen, “High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma,” Clinical Cancer Research, vol. 11, no. 14, pp. 5158–5166, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. Cotignola, B. Reva, N. Mitra et al., “Matrix metalloproteinase-9 (MMP-9) polymorphisms in patients with cutaneous malignant melanoma,” BMC Medical Genetics, vol. 8, article 10, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. E.-M. Schnaeker, R. Ossig, T. Ludwig et al., “Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: prerequisite in human melanoma cell invasion,” Cancer Research, vol. 64, no. 24, pp. 8924–8931, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Durko, R. Navab, H. R. Shibata, and P. Brodt, “Suppression of basement membrane type IV collagen degradation and cell invasion in human melanoma cells expressing an antisense RNA for MMP-1,” Biochimica et Biophysica Acta, vol. 1356, no. 3, pp. 271–280, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. U. B. Hofmann, J. R. Westphal, A. J. W. Zendman, J. C. Becker, D. J. Ruiter, and G. N. P. Van Muijen, “Expression and activation of matrix metalloproteinase-2 (MMP-2) and its co-localization with membrane-type I matrix metalloproteinase (MTI-MMP) correlate with melanoma progression,” Journal of Pathology, vol. 191, no. 3, pp. 245–256, 2000. View at Google Scholar · View at Scopus
  34. S. Wojtowicz-Praga, J. Torri, M. Johnson et al., “Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer,” Journal of Clinical Oncology, vol. 16, no. 6, pp. 2150–2156, 1998. View at Google Scholar · View at Scopus
  35. M. A. Rudek, W. D. Figg, V. Dyer et al., “Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer,” Journal of Clinical Oncology, vol. 19, no. 2, pp. 584–592, 2001. View at Google Scholar · View at Scopus
  36. X. Jin, M. Yagi, N. Akiyama et al., “Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis,” Cancer Science, vol. 97, no. 12, pp. 1327–1334, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. Wojtowicz-Praga, J. Low, J. Marshall et al., “Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer,” Investigational New Drugs, vol. 14, no. 2, pp. 193–202, 1996. View at Google Scholar · View at Scopus
  38. B. Bodey, B. Bodey Jr., A. M. Gröger, S. E. Siegel, and H. E. Kaiser, “Invasion and metastasis: the expression and significance of matrix metalloproteinases in carcinomas of the lung,” In Vivo, vol. 15, no. 2, pp. 175–180, 2001. View at Google Scholar · View at Scopus
  39. K. Airola, T. Karonen, M. Vaalamo et al., “Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas,” British Journal of Cancer, vol. 80, no. 5-6, pp. 733–743, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. B. Anand-Apte, L. Bao, R. Smith et al., “A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth,” Biochemistry and Cell Biology, vol. 74, no. 6, pp. 853–862, 1996. View at Google Scholar · View at Scopus
  41. B. M. Mueller, “Different roles for plasminogen activators and metalloproteinases in melanoma metastasis,” Current Topics in Microbiology and Immunology, vol. 213, pp. 65–80, 1996. View at Google Scholar · View at Scopus
  42. C. Delbaldo, I. Masouye, J.-H. Saurat, J.-D. Vassalli, and A.-P. Sappino, “Plasminogen activation in melanocytic neoplasia,” Cancer Research, vol. 54, no. 16, pp. 4547–4552, 1994. View at Google Scholar · View at Scopus
  43. V. J. Hearing, L. W. Law, A. Corti, E. Appella, and F. Blasi, “Modulation of metastatic potential by cell surface urokinase of murine melanoma cells,” Cancer Research, vol. 48, no. 5, pp. 1270–1278, 1988. View at Google Scholar · View at Scopus
  44. R. Roy, J. Yang, and M. A. Moses, “Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer,” Journal of Clinical Oncology, vol. 27, no. 31, pp. 5287–5297, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. C. Huang, B. C. Sheu, W. C. Chang, C. Y. Cheng, P. H. Wang, and S. Lin, “Extracellular matrix proteases—cytokine regulation role in cancer and pregnancy,” Frontiers in Bioscience, vol. 14, pp. 1571–1588, 2009. View at Google Scholar · View at Scopus
  46. A. Vacca, D. Ribatti, M. Presta et al., “Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma,” Blood, vol. 93, no. 9, pp. 3064–3073, 1999. View at Google Scholar · View at Scopus
  47. F. Suhr, K. Brixius, and W. Bloch, “Angiogenic and vascular modulation by extracellular matrix cleavage products,” Current Pharmaceutical Design, vol. 15, no. 4, pp. 389–410, 2009. View at Google Scholar · View at Scopus
  48. S. Singhal and J. Mehta, “Thalidomide in cancer,” Biomedicine and Pharmacotherapy, vol. 56, no. 1, pp. 4–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Zhang, M. Li, Y. Gu et al., “Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma,” Journal of Experimental and Clinical Cancer Research, vol. 27, no. 1, article 60, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. L. Lu, F. Payvandi, L. Wu et al., “The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions,” Microvascular Research, vol. 77, no. 2, pp. 78–86, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. L. W. Vestermark, S. Larsen, B. Lindeløv, and L. Bastholt, “A phase II study of thalidomide in patients with brain metastases from malignant melanoma,” Acta Oncologica, vol. 47, no. 8, pp. 1526–1530, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. J. Lutzky, R. Weber, Y. Nunez et al., “A phase 1 study of granulocyte macrophage colony-stimulating factor (sargramostim) and escalating doses of thalidomide in patients with high-risk malignant melanoma,” Journal of Immunotherapy, vol. 32, no. 1, pp. 79–85, 2009. View at Google Scholar
  53. L. F. Hutchins, J. Moon, J. I. Clark et al., “Evaluation of interferon alpha-2B and thalidomide in patients with disseminated malignant melanoma, phase 2, SWOG 0026,” Cancer, vol. 110, no. 10, pp. 2269–2275, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. U. N. Vaishampayan, L. K. Heilbrun, C. Marsack, D. W. Smith, and L. E. Flaherty, “Phase II trial of pegylated interferon and thalidomide in malignant metastatic melanoma,” Anti-Cancer Drugs, vol. 18, no. 10, pp. 1221–1226, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. I. Quirt, S. Verma, T. Petrella, K. Bak, and M. Charette, “Temozolomide for the treatment of metastatic melanoma: a systematic review,” Oncologist, vol. 12, no. 9, pp. 1114–1123, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. B. Atkins, J. A. Sosman, S. Agarwala et al., “Temozolomide, thalidomide, and whole brain radiation therapy for patients with brain metastasis from metastatic melanoma: a phase II cytokine working group study,” Cancer, vol. 113, no. 8, pp. 2139–2145, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. A. Ott, J. L. Chang, R. Oratz et al., “Phase II trial of dacarbazine and thalidomide for the treatment of metastatic melanoma,” Chemotherapy, vol. 55, no. 4, pp. 221–227, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. J. Drevs, J. Fakler, S. Eisele et al., “Antiangiogenic potency of various chemotherapeutic drugs for metronomic chemotherapy,” Anticancer Research, vol. 24, no. 3A, pp. 1759–1763, 2004. View at Google Scholar · View at Scopus
  59. B. C. Kuenen, J. Tabernero, J. Baselga et al., “Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma,” Clinical Cancer Research, vol. 9, no. 5, pp. 1648–1655, 2003. View at Google Scholar · View at Scopus
  60. A. C. Peterson, S. Swiger, W. M. Stadler, M. Medved, G. Karczmar, and T. F. Gajewski, “Phase II study of the Flk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma,” Clinical Cancer Research, vol. 10, no. 12, part 1, pp. 4048–4054, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. M. Mita, E. K. Rowinsky, L. Forero et al., “A phase II, pharmacokinetic, and biologic study of semaxanib and thalidomide in patients with metastatic melanoma,” Cancer Chemotherapy and Pharmacology, vol. 59, no. 2, pp. 165–174, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. I. Quirt, A. Bodurtha, R. Lohmann et al., “Phase II study of marimastat (BB-2516) in malignant melanoma: a clinical and tumor biopsy study of the National Cancer Institute of Canada Clinical Trials Group,” Investigational New Drugs, vol. 20, no. 4, pp. 431–437, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Pavlaki and S. Zucker, “Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials,” Cancer and Metastasis Reviews, vol. 22, no. 2-3, pp. 177–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. L. M. Coussens, B. Fingleton, and L. M. Matrisian, “Matrix metalloproteinase inhibitors and cancer: trials and tribulations,” Science, vol. 295, no. 5564, pp. 2387–2392, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. K. A. Varker, J. E. Biber, C. Kefauver et al., “A randomized phase 2 trial of bevacizumab with or without daily low-dose interferon alfa-2b in metastatic malignant melanoma,” Annals of Surgical Oncology, vol. 14, no. 8, pp. 2367–2376, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. D. G. Perez, V. J. Suman, T. R. Fitch et al., “Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047A,” Cancer, vol. 115, no. 1, pp. 119–127, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. L. M. Vásquez, S. Somani, F. Altomare, and E. R. Simpson, “Intracameral bevacizumab in the treatment of neovascular glaucoma and exudative retinal detachment after brachytherapy in choroidal melanoma,” Canadian Journal of Ophthalmology, vol. 44, no. 1, pp. 106–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Schicher, V. Paulitschke, A. Swoboda et al., “Erlotinib and bevacizumab have synergistic activity against melanoma,” Clinical Cancer Research, vol. 15, no. 10, pp. 3495–3502, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. M. Basche, D. L. Gustafson, S. N. Holden et al., “A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors,” Clinical Cancer Research, vol. 12, no. 18, pp. 5471–5480, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. F. Mitjans, T. Meyer, C. Fittschen et al., “In vivo therapy of malignant melanoma by means of antagonists of αv integrins,” International Journal of Cancer, vol. 87, no. 5, pp. 716–723, 2000. View at Google Scholar · View at Scopus
  71. B. Qu, L. Guo, J. Ma, and Y. Lv, “Antiangiogenesis therapy might have the unintended effect of promoting tumor metastasis by increasing an alternative circulatory system,” Medical Hypotheses, vol. 74, no. 2, pp. 360–361, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus