Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 149256, 13 pages
http://dx.doi.org/10.1155/2012/149256
Research Article

A Standardized Chinese Herbal Decoction, Kai-Xin-San, Restores Decreased Levels of Neurotransmitters and Neurotrophic Factors in the Brain of Chronic Stress-Induced Depressive Rats

1Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong
2School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received 20 April 2012; Revised 16 June 2012; Accepted 10 July 2012

Academic Editor: Kelvin Chan

Copyright © 2012 Kevin Yue Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Parker, “Beyond major depression,” Psychological Medicine, vol. 35, no. 4, pp. 467–474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Lanni, S. Govoni, A. Lucchelli, and C. Boselli, “Depression and antidepressants: molecular and cellular aspects,” Cellular and Molecular Life Sciences, vol. 66, no. 18, pp. 2985–3008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Binder, N. Hirokawa, and U. Windhorst, Encyclopedia of Neuroscience, Springer, Berlin, Germany, 2009.
  4. S. M. Stahl, Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, Cambridge University Press, Cambridge, UK.
  5. V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature, vol. 455, no. 7215, pp. 894–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Sun, Beiji QIanjin Yaofang JIaoshi, People Medicinal Publishing House, Beijing, China, 1998.
  7. K. Y. Zhu, Q. Fu, H. Q. Xie et al., “Quality assessment of a formulated Chinese herbal decoction, Kaixinsan, by using rapid resolution liquid chromatography coupled with mass spectrometry: a chemical evaluation of different historical formulae,” Journal of Separation Science, vol. 33, no. 23-24, pp. 3666–3674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Q. Mao, S. P. Ip, K. M. Ko, S. H. Tsai, and C. T. Che, “Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 7, pp. 1211–1216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Y. Zhu, Q. Fu, K. W. Leung, Z. C. F. Wong, R. C. Y. Choi, and K. W. K. Tsim, “The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography-electrospray tandem mass spectrometry,” Journal of Chromatography B, vol. 879, no. 11-12, pp. 737–742, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Lee, Y. J. Lee, J. K. Shin et al., “Effects of triterpenoids from Poria cocos Wolf on the serotonin type 3A receptor-mediated ion current in Xenopus oocytes,” European Journal of Pharmacology, vol. 615, no. 1–3, pp. 27–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Winer, C. K. S. Jung, I. Shackel, and P. M. Williams, “Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro,” Analytical Biochemistry, vol. 270, no. 1, pp. 41–49, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Commissiong, “Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity,” Biochemical Pharmacology, vol. 34, no. 8, pp. 1127–1131, 1985. View at Publisher · View at Google Scholar · View at Scopus
  13. R. K. W. Schwarting and J. P. Huston, “Behavioral concomitants of regional changes in the brain's biogenic amines after apomorphine and amphetamine,” Pharmacology Biochemistry and Behavior, vol. 41, no. 4, pp. 675–682, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. T. H. H. Pang, F. C. F. Ip, and N. Y. Ip, “Recent development in the search for effective antidepressants using traditional Chinese medicine,” Central Nervous System Agents in Medicinal Chemistry, vol. 8, no. 1, pp. 64–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Dang, Y. Chen, X. Liu et al., “Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 8, pp. 1417–1424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Dang, L. Sun, X. Liu et al., “Preventive action of Kai Xin San aqueous extract on depressive-like symptoms and cognition deficit induced by chronic mild stress,” Experimental Biology and Medicine, vol. 234, no. 7, pp. 785–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Liu, Y. Luo, R. Zhang, and J. Guo, “Effects of ginsenosides on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor in rats exposed to chronic unpredictable mild stress,” Zhongguo Zhongyao Zazhi, vol. 36, no. 10, pp. 1342–1347, 2011. View at Google Scholar
  18. Y. Hu, H. B. Liao, G. Dai-Hong, P. Liu, Y. Y. Wang, and K. Rahman, “Antidepressant-like effects of 3,6-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats,” Neurochemistry International, vol. 56, no. 3, pp. 461–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Liu, D. X. Wang, D. H. Guo et al., “Antidepressant effect of 3, 6-disinapoyl sucrose from Polygala tenuifolia willd in pharmacological depression model,” Chinese Pharmaceutical Journal, vol. 43, no. 18, pp. 1391–1394, 2008. View at Google Scholar · View at Scopus
  20. M. Li and H. Chen, “Antidepressant effect of water decoction of Rhizoma acori tatarinowii in the behavioural despair animal models of depression,” Journal of Chinese Medicinal Materials, vol. 24, no. 1, pp. 40–41, 2001. View at Google Scholar · View at Scopus
  21. Y. H. Park, I. H. Son, B. Kim, Y. S. Lyu, H. I. Moon, and H. W. Kang, “Poria cocos water extract (PCW) protects PC12 neuronal cells from beta-amyloid-induced cell death through antioxidant and antiapoptotic functions,” Pharmazie, vol. 64, no. 11, pp. 760–764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. J. Schildkraut, “The catecholamine hypothesis of affective disorders: a review of supporting evidence,” The American journal of psychiatry, vol. 122, no. 5, pp. 509–522, 1965. View at Google Scholar · View at Scopus
  23. E. Castrén, V. Võikar, and T. Rantamäki, “Role of neurotrophic factors in depression,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 18–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Karege, G. Perret, G. Bondolfi, M. Schwald, G. Bertschy, and J. M. Aubry, “Decreased serum brain-derived neurotrophic factor levels in major depressed patients,” Psychiatry Research, vol. 109, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Aydemir, E. S. Yalcin, S. Aksaray et al., “Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 30, no. 7, pp. 1256–1260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Siuciak, D. R. Lewis, S. J. Wiegand, and R. M. Lindsay, “Antidepressant-like effect of brain-derived neurotrophic factor (BDNF),” Pharmacology Biochemistry and Behavior, vol. 56, no. 1, pp. 131–137, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. D. H. Overstreet, K. Fredericks, D. Knapp, G. Breese, and J. McMichael, “Nerve growth factor (NGF) has novel antidepressant-like properties in rats,” Pharmacology Biochemistry and Behavior, vol. 94, no. 4, pp. 553–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Kim, S. H. Kim, Y. S. Kim, Y. H. Lee, K. Ha, and S. Y. Shin, “Imipramine activates glial cell line-derived neurotrophic factor via early growth response gene 1 in astrocytes,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 4, pp. 1026–1032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Nishiyama, Y. Zhou, and H. Saito, “Beneficial effects of DX-9386, a traditional Chinese prescription, on memory disorder produced by lesioning the amygdala in mice,” Biological and Pharmaceutical Bulletin, vol. 17, no. 12, pp. 1679–1681, 1994. View at Google Scholar · View at Scopus
  30. L. H. Mu, Z. X. Huang, P. Liu, Y. Hu, and Y. Gao, “Acute and subchronic oral toxicity assessment of the herbal formula Kai-Xin-San,” Journal of Ethnopharmacology, vol. 138, no. 2, pp. 351–357, 2011. View at Google Scholar