Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 674101, 10 pages
http://dx.doi.org/10.1155/2012/674101
Research Article

Evaluation of Safety and Protective Effect of Combined Extract of Cissampelos pareira and Anethum graveolens (PM52) against Age-Related Cognitive Impairment

1Neuroscience Program Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
2Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
3Integrative Complementary Alternative Medicine Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand

Received 5 June 2012; Accepted 4 August 2012

Academic Editor: Tibor Wenger

Copyright © 2012 Wipawee Thukham-mee and Jintanaporn Wattanathorn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Butterfield, H. M. Abdul, S. Newman, and T. Reed, “Redox proteomics in some age-related neurodegenerative disorders or models thereof,” NeuroRx, vol. 3, no. 3, pp. 344–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Forster, A. Dubey, K. M. Dawson, W. A. Stutts, H. Lal, and R. S. Sohal, “Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 10, pp. 4765–4769, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Murali and C. Panneerselvam, “Age-associated oxidative macromolecular damages in rat brain regions: role of glutathione monoester,” Journals of Gerontology Series A, vol. 62, no. 8, pp. 824–830, 2007. View at Google Scholar · View at Scopus
  4. S. Govoni, M. Amadio, F. Battaini, and A. Pascale, “Senescence of the brain: focus on cognitive kinases,” Current Pharmaceutical Design, vol. 16, no. 6, pp. 660–671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. C. Mokrasch and E. J. Teschke, “Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay,” Analytical Biochemistry, vol. 140, no. 2, pp. 506–509, 1984. View at Google Scholar · View at Scopus
  6. S. N. Pradhan, “Central neurotransmitters and aging,” Life Sciences, vol. 26, no. 20, pp. 1643–1656, 1980. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Papandreou, C. D. Kanakis, M. G. Polissiou et al., “Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents,” Journal of Agricultural and Food Chemistry, vol. 54, no. 23, pp. 8762–8768, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Rice-Evans, “Flavonoid antioxidants,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 797–807, 2001. View at Google Scholar · View at Scopus
  9. K. Fukui, N. O. Omoi, T. Hayasaka et al., “Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E,” Annals of the New York Academy of Sciences, vol. 959, pp. 275–284, 2002. View at Google Scholar · View at Scopus
  10. E. Candelario-Jalil, N. H. Mhadu, S. M. Al-Dalain, G. Martínez, and O. S. León, “Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils,” Neuroscience Research, vol. 41, no. 3, pp. 233–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Parle, D. Dhingra, and S. K. Kulkarni, “Neurochemical basis of learning and memory,” Indian Journal of Pharmaceutical Sciences, vol. 66, no. 4, pp. 371–376, 2004. View at Google Scholar · View at Scopus
  12. L. Devi, L. Diwakar, T. R. Raju, and B. M. Kutty, “Selective neurodegeneration of hippocampus and entorhinal cortex correlates with spatial learning impairments in rats with bilateral ibotenate lesions of ventral subiculum,” Brain Research, vol. 960, no. 1-2, pp. 9–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. P. Oswald and M. Good, “The effects of combined lesions of the subicular complex and the entorhinal cortex on two forms of spatial navigation in the water maze,” Behavioral Neuroscience, vol. 114, no. 1, pp. 211–217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. W. H. Peng, M. T. Hsieh, and C. R. Wu, “Effect of long-term administration of berberine on scopolamine-induced amnesia in rats,” Japanese Journal of Pharmacology, vol. 74, no. 3, pp. 261–266, 1997. View at Google Scholar · View at Scopus
  15. C. Ghelardini, N. Galeotti, A. Bartolini et al., “Memory facilitation and stimulation of endogenous nerve growth factor synthesis by the acetylcholine releaser PG-9,” Japanese Journal of Pharmacology, vol. 78, no. 3, pp. 245–251, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Sriraksa, J. Wattanathorn, S. Muchimapura, S. Tiamkao, K. Brown, and K. Chaisiwamongkol, “Cognitive-enhancing effect of quercetin in a rat model of Parkinson's disease induced by 6-hydroxydopamine,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 823206, 9 pages, 2012. View at Publisher · View at Google Scholar
  17. F. Pu, K. Mishima, K. Irie et al., “Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats,” Journal of Pharmacological Sciences, vol. 104, no. 4, pp. 329–334, 2007. View at Publisher · View at Google Scholar · View at Scopus