Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 834156, 7 pages
http://dx.doi.org/10.1155/2012/834156
Research Article

Evaluation of the Acetone and Aqueous Extracts of Mature Stem Bark of Sclerocarya birrea for Antioxidant and Antimicrobial Properties

1Microbial Pathogenicity and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
2Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon

Received 9 January 2012; Revised 10 March 2012; Accepted 17 March 2012

Academic Editor: Victor Kuete

Copyright © 2012 Nicoline F. Tanih and Roland N. Ndip. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  2. A. A. Mariod, B. Matthäus, and I. H. Hussein, “Antioxidant properties of methanolic extracts from different parts of Sclerocarya birrea,” International Journal of Food Science and Technology, vol. 43, no. 5, pp. 921–926, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Gülçin, “Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid),” Toxicology, vol. 217, no. 2-3, pp. 213–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. A. Mariod, B. Matthäus, and I. H. Hussein, “Antioxidant properties of methanolic extracts from different parts of Sclerocarya birrea,” International Journal of Food Science and Technology, vol. 43, no. 5, pp. 921–926, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. O. Oyedemi, G. Bradley, and A. J. Afolayan, “In vitro and in vivo antioxidant activities of aqueous extract of Strychnos henningsii Gilg,” African Journal of Pharmacy and Pharmacology, vol. 4, no. 2, pp. 070–078, 2010. View at Google Scholar · View at Scopus
  6. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998. View at Google Scholar · View at Scopus
  7. R. Amarowicz, M. Karamać, and F. Shahidi, “Antioxidant activity of phenolic fractions of lentil (Lens culinaris),” Journal of Food Lipids, vol. 10, no. 1, pp. 1–10, 2003. View at Google Scholar · View at Scopus
  8. S. J. Jadhav, S. S. Nimbalkar, A. D. Kulkarni, and D. L. Madhavi, “Lipid oxidation in biological and food systems,” in Food Antioxidants, D. L. Madhavi, S. S. Deshpande, and D. K. Salunkhe, Eds., pp. 5–63, Dekker, New York, NY, USA, 1996. View at Google Scholar
  9. J. N. Eloff, “Antibacterial activity of Marula (Sclerocarya birrea (A. rich.) Hochst. subsp. caffra (Sond.) Kokwaro) (Anacardiaceae) bark and leaves,” Journal of Ethnopharmacology, vol. 76, no. 3, pp. 305–308, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Masoko, T. J. Mmushi, M. M. Mogashoa, M. P. Mokgotho, L. J. Mampuru, and R. L. Howard, “In vitro evaluation of the antifungal activity of Sclerocarya birrea extracts against pathogenic yeasts,” African Journal of Biotechnology, vol. 7, no. 20, pp. 3521–3526, 2008. View at Google Scholar · View at Scopus
  11. C. Njume, A. J. Afolayan, E. Green, and R. N. Ndip, “Volatile compounds in the stem bark of Sclerocarya birrea (Anacardiaceae) possess antimicrobial activity against drug-resistant strains of Helicobacter pylori,” International Journal of Antimicrobial Agents, vol. 38, no. 4, pp. 319–324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. N. F. Tanih, B. I. Okeleye, N. Naidoo et al., “Marked susceptibility of South African Helicobacter pylori strains to ciprofloxacin and amoxicillin: clinical implications,” South African Medical Journal, vol. 100, no. 1, pp. 49–52, 2010. View at Google Scholar · View at Scopus
  13. M. Nyenje and R. N. Ndip, “In-vitro antimicrobial activity of the crude acetone extract of the stem bark of Combretum molle against selected bacterial pathogens of medical importance,” Journal of Medicinal Plants Research, vol. 5, no. 21, pp. 5315–5320, 2011. View at Google Scholar
  14. A. A. Adefuye, A. Samie, and R. N. Ndip, “In-vitro evaluation of the antimicrobial activity of extracts of Bridelia micrantha on selected bacterial pathogens,” Journal of Medicinal Plants Research, vol. 5, no. 20, pp. 5116–5122, 2011. View at Google Scholar
  15. A. A. Mariod, B. Matthäus, Y. M. A. Idris, and S. I. Abdelwahab, “Fatty acids, tocopherols, phenolics and the antimicrobial effect of Sclerocarya birrea kernels with different harvesting dates,” JAOCS, Journal of the American Oil Chemists' Society, vol. 87, no. 4, pp. 377–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. Shai, L. J. McGaw, P. Masoko, and J. N. Eloff, “Antifungal and antibacterial activity of seven traditionally used South African plant species active against Candida albicans,” South African Journal of Botany, vol. 74, no. 4, pp. 677–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Wolfe, X. Wu, and R. H. Liu, “Antioxidant activity of apple peels,” Journal of Agricultural and Food Chemistry, vol. 51, no. 3, pp. 609–614, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. A. L. Ordoñez, J. D. Gomez, M. A. Vattuone, and M. I. Isla, “Antioxidant activities of Sechium edule (Jacq.) Swartz extracts,” Food Chemistry, vol. 97, no. 3, pp. 452–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kumaran and R. J. Karunakaran, “In vitro antioxidant activities of methanol extracts of Phyllantus species from India,” Lebensmittel-Wissenschaft und -Technologie, vol. 40, pp. 344–352, 2007. View at Google Scholar
  20. G. C. Yen and H. Y. Chen, “Antioxidant activity of various tea extracts in relation to their antimutagenicity,” Journal of Agricultural and Food Chemistry, vol. 43, no. 1, pp. 27–32, 1995. View at Google Scholar · View at Scopus
  21. C. M. Liyana-Pathirana and F. Shahidi, “Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions,” Journal of Agricultural and Food Chemistry, vol. 53, no. 7, pp. 2433–2440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Williamson and C. Manach, “Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies.,” The American journal of clinical nutrition, vol. 81, no. 1, supplement, pp. 243S–255S, 2005. View at Google Scholar · View at Scopus
  23. A. Braca, G. Fico, I. Morelli, F. De Simone, F. Tomè, and N. De Tommasi, “Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species,” Journal of Ethnopharmacology, vol. 86, no. 1, pp. 63–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. O. J. M. Hamza, C. J. P. van den Bout-van den Beukel, M. I. N. Matee et al., “Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections,” Journal of Ethnopharmacology, vol. 108, no. 1, pp. 124–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Pretorius, E. Rohwer, A. Rapp, L. C. Holtzhausen, and H. Mandery, “Volatile flavour components of marula juice,” Zeitschrift für Lebensmittel-Untersuchung und -Forschung, vol. 181, no. 6, pp. 458–461, 1985. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Kojic, P. Vlahonic, and D. Ravloure, “The possible importance of the cation binding site for the oxidative modification of liver nucleolidase,” Archives of Physiology and Biochemistry, vol. 106, pp. 91–99, 1998. View at Google Scholar
  27. A. Luximon-Ramma, T. Bahorun, M. A. Soobrattee, and O. I. Aruoma, “Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula,” Journal of Agricultural and Food Chemistry, vol. 50, no. 18, pp. 5042–5047, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Miliauskas, P. R. Venskutonis, and T. A. Van Beek, “Screening of radical scavenging activity of some medicinal and aromatic plant extracts,” Food Chemistry, vol. 85, no. 2, pp. 231–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Shahidi, U. N. Wanasundara, and R. Amarowicz, “Natural antioxidants from low-pungency mustard flour,” Food Research International, vol. 27, no. 5, pp. 489–493, 1994. View at Google Scholar · View at Scopus
  30. L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian, “Free radical scavenging properties of wheat extracts,” Journal of Agricultural and Food Chemistry, vol. 50, no. 6, pp. 1619–1624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. E. N. Frankel and A. S. Meyer, “The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants,” Journal of the Science of Food and Agriculture, vol. 80, pp. 1925–1941, 2000. View at Google Scholar