Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 928643, 6 pages
http://dx.doi.org/10.1155/2012/928643
Research Article

Effect of Quercetin in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-Induced Mouse Model of Parkinson's Disease

1Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China
2Institute of Changbai Mountain Natural Resources, Jilin Academy of Chinese Medicine Sciences, Changchun 130012, China
3College of Pharmacy, Yanbian University, Yanji 133002, China

Received 17 September 2011; Revised 5 November 2011; Accepted 7 November 2011

Academic Editor: Mahmud Tareq Hassan Khan

Copyright © 2012 Chuanfeng Lv et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Heisters, “Parkinson's: symptoms, treatments and research,” British Journal of Nursing, vol. 20, no. 9, pp. 548–554, 2011. View at Google Scholar
  2. R. D. Prediger, A. S. Aguiar Jr., E. L.G. Moreira et al., “The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (mptp): a new rodent model to test palliative and neuroprotective agents for parkinson's disease,” Current Pharmaceutical Design, vol. 17, no. 5, pp. 489–507, 2011. View at Publisher · View at Google Scholar
  3. F. Cicchetti, J. Drouin-Ouellet, and R. E. Gross, “Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models?” Trends in Pharmacological Sciences, vol. 30, no. 9, pp. 475–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ishisaka, S. Ichikawa, H. Sakakibara et al., “Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats,” Free Radical Biology and Medicine, vol. 51, no. 7, pp. 1329–1336, 2011. View at Publisher · View at Google Scholar
  5. K. A. Youdim, M. Z. Qaiser, D. J. Begley, C. A. Rice-Evans, and N. J. Abbott, “Flavonoid permeability across an in situ model of the blood-brain barrier,” Free Radical Biology and Medicine, vol. 36, no. 5, pp. 592–604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Ishige, D. Schubert, and Y. Sagara, “Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms,” Free Radical Biology and Medicine, vol. 30, no. 4, pp. 433–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. F. L'Episcopo, C. Tirolo, S. Caniglia et al., “Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease,” Journal of Neuroinflammation, vol. 7, article 83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Li and X. P. Pu, “Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced mouse model of Parkinson's disease,” Biological and Pharmaceutical Bulletin, vol. 34, no. 8, pp. 1291–1296, 2011. View at Publisher · View at Google Scholar
  9. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, “Selenium: biochemical role as a component of glatathione peroxidase,” Science, vol. 179, no. 4073, pp. 588–590, 1973. View at Google Scholar · View at Scopus
  10. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Google Scholar · View at Scopus
  11. A. T. S. Wyse, M. Wajner, A. Brusque, and C. M. D. Wannmacher, “Alanine reverses the inhibitory effect of phenylalanine and its metabolites on Na+,K+-ATPase in synaptic plasma membranes from cerebral cortex of rats,” Biochemical Society Transactions, vol. 23, no. 2, p. 227, 1995. View at Google Scholar · View at Scopus
  12. G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Google Scholar · View at Scopus
  13. Z. Q. Su, S. H. Wu, H. L. Zhang, and Y. F. Feng, “Development and validation of an improved Bradford method for determination of insulin from chitosan nanoparticulate systems,” Pharmaceutical Biology, vol. 48, no. 9, pp. 966–973, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Röhl, E. Armbrust, E. Herbst et al., “Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation,” Neurotoxicity Research, vol. 17, no. 4, pp. 317–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Ito, K. Suzuki, K. Uchida, and H. Nakayama, “Different susceptibility to 1-methyl-4-phenylpyridium (MPP+)-induced nigro-striatal dopaminergic cell loss between C57BL/6 and BALB/c mice is not related to the difference of monoamine oxidase-B (MAO-B),” Experimental and Toxicologic Pathology. In press. View at Publisher · View at Google Scholar
  16. J. Lee, B. Kosaras, S. J. Del Signore et al., “Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington's disease mice,” Acta Neuropathologica, vol. 121, no. 4, pp. 487–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. J. Lees, A. Lehmann, M. Sandberg, and A. Hamberger, “The neurotoxicity of ouabain, a sodium-potassium ATPase inhibitor, in the rat hippocampus,” Neuroscience Letters, vol. 120, no. 2, pp. 159–162, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Mohseni, H. K. Sung, A. J. Murphy et al., “Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions,” Journal of Neuroscience, vol. 31, no. 32, pp. 11547–11552, 2011. View at Publisher · View at Google Scholar
  19. Y. S. Lau, G. Patki, K. Das-Panja, W. -D. Le, and S. O. Ahmad, “Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson's disease with moderate neurodegeneration,” European Journal of Neuroscience, vol. 33, no. 7, pp. 1264–1274, 2011. View at Publisher · View at Google Scholar