Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 980276, 10 pages
http://dx.doi.org/10.1155/2012/980276
Research Article

Rutin, a Flavonoid That Is a Main Component of Saussurea involucrata, Attenuates the Senescence Effect in D-Galactose Aging Mouse Model

1Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Ilan 260, Taiwan
2Laboratory of Exercise Biochemistry, Taipei Sports University, Taipei 111, Taiwan
3Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
4NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
5The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404, Taiwan
6Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
7Department of Biotechnology, Asia University, Taichung 413, Taiwan
8Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
9Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
10Sensory Physiology Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaoshi, Ilan 262, Taiwan

Received 5 March 2012; Accepted 19 June 2012

Academic Editor: Yukihiro Shoyama

Copyright © 2012 Ying-Chen Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Barnham, C. L. Masters, and A. I. Bush, “Neurodegenerative diseases and oxidatives stress,” Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 205–214, 2004. View at Google Scholar · View at Scopus
  2. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. T. Yin, M. L. Tang, H. M. Deng et al., “Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 379, no. 6, pp. 551–564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. A. Floyd, L. M. Soong, M. A. Stuart, and D. L. Reight, “Free radicals and carcinogenesis. Some properties of the nitroxyl free radicals produced by covalent binding of 2-nitrosofluorene to unsaturated lipids of membranes,” Archives of Biochemistry and Biophysics, vol. 185, no. 2, pp. 450–457, 1978. View at Google Scholar · View at Scopus
  6. P. Tachon, “DNA single strand breakage by H2O2 and ferric or cupric ions: its modulation by histidine,” Free Radical Research Communications, vol. 9, no. 1, pp. 39–47, 1990. View at Google Scholar · View at Scopus
  7. T. Nakamura and K. Sakamoto, “Reactive oxygen species up-regulates cyclooxygenase-2, p53, and Bax mRNA expression in bovine luteal cells,” Biochemical and Biophysical Research Communications, vol. 284, no. 1, pp. 203–210, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. R. Adderley and D. J. Fitzgerald, “Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediate induction of cyclooxygenase-2,” The Journal of Biological Chemistry, vol. 274, no. 8, pp. 5038–5046, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Feng, Y. Xia, G. E. Garcia, D. Hwang, and C. B. Wilson, “Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-α, and lipopolysaccharide,” The Journal of Clinical Investigation, vol. 95, no. 4, pp. 1669–1675, 1995. View at Google Scholar · View at Scopus
  10. A. K. Lee, S. H. Sung, Y. C. Kim, and S. G. Kim, “Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-α and COX-2 expression by sauchinone effects on I-κBα phosphorylation, C/EBP and AP-1 activation,” British Journal of Pharmacology, vol. 139, no. 1, pp. 11–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Li, K. Prabhakaran, Y. Shou, J. L. Borowitz, and G. E. Isom, “Oxidative stress and cyclooxygenase-2 induction mediate cyanide-induced apoptosis of cortical cells,” Toxicology and Applied Pharmacology, vol. 185, no. 1, pp. 55–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. L. Willson, “Peroxy free radicals and enzyme inactivation in radiation injury and oxygen toxicity: protection by superoxide dismutase and antioxidants?” The Lancet, vol. 1, no. 8380, p. 804, 1984. View at Google Scholar · View at Scopus
  13. Z. F. Zhang, S. H. Fan, Y. L. Zheng et al., “Purple sweet potato color attenuates oxidative stress and inflammatory response induced by d-galactose in mouse liver,” Food and Chemical Toxicology, vol. 47, no. 2, pp. 496–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Cui, L. Wang, P. Zuo et al., “D-Galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress,” Biogerontology, vol. 5, no. 5, pp. 317–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Fang and G. Liu, “A novel cyclic squamosamide analogue compound FLZ improves memory impairment in artificial senescence mice induced by chronic injection of D-galactose and NaNO2,” Basic and Clinical Pharmacology and Toxicology, vol. 101, no. 6, pp. 447–454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. He, L. Zhao, M. J. Wei, W. F. Yao, H. S. Zhao, and F. J. Chen, “Neuroprotective effects of (-)-epigallocatechin-3-gallate on aging mice induced by D-galactose,” Biological and Pharmaceutical Bulletin, vol. 32, no. 1, pp. 55–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Cui, P. Zuo, Q. Zhang et al., “Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-α-lipoic acid,” Journal of Neuroscience Research, vol. 84, no. 3, pp. 647–654, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Wei, L. Li, Q. Song, H. Ai, J. Chu, and W. Li, “Behavioural study of the D-galactose induced aging model in C57BL/6J mice,” Behavioural Brain Research, vol. 157, no. 2, pp. 245–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. X. H. Xu and Z. G. Zhang, “Effect of puerarin on learning-memory behavior and synaptic structure of hippocampus in the aging mice induced by D-galactose,” Yaoxue Xuebao, vol. 37, no. 1, pp. 1–4, 2002. View at Google Scholar · View at Scopus
  20. Y. X. Shen, S. Y. Xu, W. Wei et al., “Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose,” Journal of Pineal Research, vol. 32, no. 3, pp. 173–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Fu, China Plant Red Data Book: Rare and Endangered Plants, vol. 1, Chinese Science Press, 1992.
  22. T. D. Way, J. C. Lee, D. H. Kuo et al., “Inhibition of epidermal growth factor receptor signaling by saussurea involucrata, a rare traditional chinese medicinal herb, in human hormone-resistant prostate cancer PC-3 cells,” Journal of Agricultural and Food Chemistry, vol. 58, no. 6, pp. 3356–3365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. H. Liu, S. C. Ho, T. H. Lai, T. H. Liu, P. Y. Chi, and R. Y. Wu, “Protective effects of Chinese herbs on D-galactose-induced oxidative damage,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 25, no. 6, pp. 447–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. L. Chen, S. Z. Lin, J. Y. Chang et al., “In vitro and in vivo studies of a novel potential anticancer agent of isochaihulactone on human lung cancer A549 cells,” Biochemical Pharmacology, vol. 72, no. 3, pp. 308–319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. La Casa, I. Villegas, C. Alarcón De La Lastra, V. Motilva, and M. J. Martín Calero, “Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions,” Journal of Ethnopharmacology, vol. 71, no. 1-2, pp. 45–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. K. H. Janbaz, S. A. Saeed, and A. H. Gilani, “Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents,” Fitoterapia, vol. 73, no. 7-8, pp. 557–563, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Schwedhelm, R. Maas, R. Troost, and R. H. Böger, “Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress,” Clinical Pharmacokinetics, vol. 42, no. 5, pp. 437–459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. R. Sheu, G. Hsiao, P. H. Chou, M. Y. Shen, and D. S. Chou, “Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets,” Journal of Agricultural and Food Chemistry, vol. 52, no. 14, pp. 4414–4418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Mellou, H. Loutrari, H. Stamatis, C. Roussos, and F. N. Kolisis, “Enzymatic esterification of flavonoids with unsaturated fatty acids: effect of the novel esters on vascular endothelial growth factor release from K562 cells,” Process Biochemistry, vol. 41, no. 9, pp. 2029–2034, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Trumbeckaite, J. Bernatoniene, D. Majiene, V. Jakštas, A. Savickas, and A. Toleikis, “The effect offlavonoids onrat heart mitochondrial function,” Biomedicine and Pharmacotherapy, vol. 60, no. 5, pp. 245–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Katsube, N. Imawaka, Y. Kawano, Y. Yamazaki, K. Shiwaku, and Y. Yamane, “Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity,” Food Chemistry, vol. 97, no. 1, pp. 25–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Nassiri-Asl, S. Shariati-Rad, and F. Zamansoltani, “Anticonvulsive effects of intracerebroventricular administration of rutin in rats,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 4, pp. 989–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Gupta, M. Singh, and A. Sharma, “Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury,” Pharmacological Research, vol. 48, no. 2, pp. 209–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Koda, Y. Kuroda, and H. Imai, “Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats,” Nutrition Research, vol. 28, no. 9, pp. 629–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. K. Richetti, M. Blank, K. M. Capiotti et al., “Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish,” Behavioural Brain Research, vol. 217, no. 1, pp. 10–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. G. R. Beecher, “Overview of dietary flavonoids: nomenclature, occurrence and intake,” Journal of Nutrition, vol. 133, no. 10, pp. 3248S–3254S, 2003. View at Google Scholar · View at Scopus
  37. F. M. Lopes, R. Schröder, M. L. da Frota Jr. et al., “Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies,” Brain Research, vol. 1337, pp. 85–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. B. Sporn, K. T. Liby, M. M. Yore, L. Fu, J. M. Lopchuk, and G. W. Gribble, “New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress,” Journal of Natural Products, vol. 74, no. 3, pp. 537–545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Kitaura, Y. Fujimura, M. Yoshimatsu et al., “IL-12- and IL-18-mediated, nitric oxide-induced apoptosis in TNF-α-mediated osteoclastogenesis of bone marrow cells,” Calcified Tissue International, vol. 89, no. 1, pp. 65–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. J. Yun, B. S. Min, J. Y. Kim, and K. T. Lee, “Styraxoside A isolated from the stem bark of Styrax japonica inhibits lipopolysaccharide-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells by suppressing nuclear factor-kappa B activation,” Biological and Pharmaceutical Bulletin, vol. 30, no. 1, pp. 139–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. W. L. Chang, L. W. Chiu, J. H. Lai, and H. C. Lin, “Immunosuppressive flavones and lignans from Bupleurum scorzonerifolium,” Phytochemistry, vol. 64, no. 8, pp. 1375–1379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” The Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  43. S. H. Choi, S. Aid, and F. Bosetti, “The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research,” Trends in Pharmacological Sciences, vol. 30, no. 4, pp. 174–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Nassiri-Asl, S.-R. Mortazavi, F. Samiee-Rad et al., “The effects of rutin on the development of pentylenetetrazole kindling and memory retrieval in rats,” Epilepsy and Behavior, vol. 18, no. 1-2, pp. 50–53, 2010. View at Publisher · View at Google Scholar · View at Scopus