Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 940531, 11 pages
http://dx.doi.org/10.1155/2013/940531
Research Article

Eupomatenoid-5 Isolated from Leaves of Piper regnellii Induces Apoptosis in Leishmania amazonensis

1Programa de Pós Graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Bloco B-08, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
2Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil

Received 15 January 2013; Accepted 26 February 2013

Academic Editor: William Setzer

Copyright © 2013 Francielle Pelegrin Garcia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, Control of the Leishmaniasis: Report of a Meeting of the WHO, WHO Technical Report Series no 949, Expert Committee on the Control of Leishmaniasis, Geneva, Switzerland, 2010.
  2. S. T. Macedo-Silva, T. L. A. de Oliveira Silva, J. A. Urbina, W. de Souza, and J. C. F. Rodrigues, “Antiproliferative, ultrastructural, and physiological effects of amiodarone on promastigote and amastigote forms of Leishmania amazonensis,” Molecular Biology International, vol. 2011, Article ID 876021, 12 pages, 2011. View at Publisher · View at Google Scholar
  3. R. L. M. Neto, L. M. A. Sousa, C. S. Dias, J. M. B. Filho, M. R. Oliveira, and R. C. B. Q. Figueiredo, “Morphological and physiological changes in Leishmania promastigotes induced by yangambin, a lignan obtained from Ocotea duckei,” Experimental Parasitology, vol. 127, no. 1, pp. 215–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Seifert and S. L. Croft, “In vitro and in vivo interactions between miltefosine and other antileishmanial drugs,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 1, pp. 73–79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. S. Tiuman, T. Ueda-Nakamura, D. A. Garcia Cortez et al., “Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 1, pp. 176–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Ueda-Nakamura, R. R. Mendonça-Filho, J. A. Morgado-Dıaz et al., “Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum,” Parasitology International, vol. 55, no. 2, pp. 99–105, 2006. View at Publisher · View at Google Scholar
  7. A. O. Santos, T. Ueda-Nakamura, B. P. Dias-Filho, V. F. Veiga Junior, and C. V. Nakamura, “Copaiba oil: an alternative to development of new drugs against Leishmaniasis,” Evidence Based Complementary and Alternative Medicine, vol. 2012, Article ID 898419, 7 pages, 2012. View at Publisher · View at Google Scholar
  8. G. L. Pessini, B. P. Dias Filho, C. V. Nakamura, and D. A. G. Cortez, “Antifungal activity of the extracts and neolignans from Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck,” Journal of the Brazilian Chemical Society, vol. 16, no. 6 A, pp. 1130–1133, 2005. View at Google Scholar · View at Scopus
  9. P. S. Luize, T. Ueda-Nakamura, B. P. Dias Filho, D. A. G. Cortez, and C. V. Nakamura, “Activity of neolignans isolated from Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck against Trypanosoma cruzi,” Biological and Pharmaceutical Bulletin, vol. 29, no. 10, pp. 2126–2130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Koroishi, S. R. Foss, D. A. G. Cortez, T. Ueda-Nakamura, C. V. Nakamura, and B. P. Dias Filho, “In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes,” Journal of Ethnopharmacology, vol. 117, no. 2, pp. 270–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. B. Holetz, G. L. Pessini, N. R. Sanches, D. A. G. Cortez, C. V. Nakamura, and B. P. Dias Filho, “Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases,” Memorias do Instituto Oswaldo Cruz, vol. 97, no. 7, pp. 1027–1031, 2002. View at Google Scholar · View at Scopus
  12. P. Sartorelli, P. J. C. Benevides, R. M. Ellensohn, M. V. A. F. Rocha, P. R. H. Moreno, and M. J. Kato, “Enantioselective conversion of p-hydroxypropenylbenzene to (+)-conocarpan in Piper regnellii,” Plant Science, vol. 161, no. 6, pp. 1083–1088, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Vendrametto, A. O. D. Santos, C. V. Nakamura, B. P. D. Filho, D. A. G. Cortez, and T. Ueda-Nakamura, “Evaluation of antileishmanial activity of eupomatenoid-5, a compound isolated from leaves of Piper regnellii var. pallescens,” Parasitology International, vol. 59, no. 2, pp. 154–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. C. Chauret, C. B. Bernard, J. T. Arnason et al., “Insecticidal neolignans from Piper decurrens,” Journal of Natural Products, vol. 59, no. 2, pp. 152–155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. R. F. S. Menna-Barreto, R. L. S. Goncalves, E. M. Costa et al., “The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction,” Free Radical Biology and Medicine, vol. 47, no. 5, pp. 644–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Shukla, S. Patra, and V. K. Dubey, “Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite,” European Journal of Medicinal Chemistry, vol. 54, pp. 49–58, 2012. View at Google Scholar
  17. L. Piacenza, F. Irigoín, M. N. Alvarez et al., “Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression,” Biochemical Journal, vol. 403, no. 2, pp. 323–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Jimenez, R. Paredes, M. A. Sosa, and N. Galanti, “Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures,” Journal of Cellular Biochemistry, vol. 105, no. 3, pp. 688–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Lazarin-Bidóia, V. C. Desoti, T. Ueda-Nakamura, B. P. Dias-Filho, C. V. Nakamura, and S. O. Silva, “Further evidence of the trypanocidal action of eupomatenoid-5: confirmation of involvement of reactive oxygen species and mitochondria owing to a reduction in trypanothione reductase activity,” Free Radical Biology and Medicine, 2013. View at Google Scholar
  20. E. A. Britta, A. P. Barbosa Silva, T. Ueda-Nakamura et al., “Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis,” PLoS ONE, vol. 7, no. 8, pp. 414–440, 2012. View at Google Scholar
  21. C. Ferreira, D. C. Soares, C. B. Barreto-Junior et al., “Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis,” Phytochemistry, vol. 72, no. 17, pp. 2155–2164, 2011. View at Google Scholar
  22. C. P. Wan, E. Myung, and B. H. S. Lau, “An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes,” Journal of Immunological Methods, vol. 159, no. 1-2, pp. 131–138, 1993. View at Google Scholar · View at Scopus
  23. C. A. Leal, M. R. Shetinger, D. B. Leal et al., “Oxidative stress and antioxidant defenses in pregnant women,” Redox Report, vol. 16, pp. 230–236, 2011. View at Google Scholar
  24. A. Debrabant and H. Nakhasi, “Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest?” Kinetoplastid Biology and Disease, vol. 2, article 7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Kroemer, L. Galluzzi, P. Vandenabeele et al., “Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009,” Cell Death and Differentiation, vol. 16, no. 1, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Khademvatan, M. J. Gharavi, and J. Saki, “Miltefosine induces metacaspase and PARP genes expression in Leishmania infantum,” Brazilian Journal of Infectious Disease, vol. 15, no. 5, pp. 442–448, 2011. View at Google Scholar
  27. S. L. Croft, S. Sundar, and A. H. Fairlambm, “Drug resistance in leishmaniasis,” Clinical Microbiology Review, vol. 19, pp. 111–126, 2006. View at Google Scholar
  28. S. Natera, C. Machuca, M. Padrón-Nieves, A. Romero, E. Díaz, and A. Ponte-Sucre, “Leishmania spp.: proficiency of drug-resistant parasites,” International Journal of Antimicrobial Agents, vol. 29, no. 6, pp. 637–642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Kowaltowski and A. E. Vercesi, “Mitochondrial damage induced by conditions of oxidative stress,” Free Radical Biology and Medicine, vol. 26, no. 3-4, pp. 463–471, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. P. Fernandes, N. M. Inada, M. R. Chiaratti et al., “Mechanism of Trypanosoma cruzi death induced by Cratylia mollis seed lectin,” Journal of Bioenergetics and Biomembranes, vol. 42, no. 1, pp. 69–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. H. Fairlamb, P. Blackburn, and P. Ulrich, “Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids,” Science, vol. 227, no. 4693, pp. 1485–1487, 1985. View at Google Scholar · View at Scopus
  32. A. H. Fairlamb and A. Cerami, “Metabolism and functions of trypanothione in the kinetoplastida,” Annual Review of Microbiology, vol. 46, pp. 695–729, 1992. View at Google Scholar · View at Scopus
  33. J. E. Chipuk and D. R. Green, “Do inducers of apoptosis trigger caspase-independent cell death?” Nature Reviews Molecular Cell Biology, vol. 6, no. 3, pp. 268–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. C. Arambage, K. M. Grant, I. Pardo, L. Ranford-Cartwright, and H. Hurd, “Malaria ookinetes exhibit multiple markers for apoptosis-like programmed cell death in vitro,” Parasites and Vectors, vol. 2, no. 1, article 32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Duszenko, K. Figarella, E. T. Macleod, and S. C. Welburn, “Death of a trypanosome: a selfish altruism,” Trends in Parasitology, vol. 22, no. 11, pp. 536–542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Bouchier-Hayes, C. Muñoz-Pinedo, S. Connell, and D. R. Green, “Measuring apoptosis at the single cell level,” Methods, vol. 44, no. 3, pp. 222–228, 2008. View at Google Scholar
  37. R. Sen, S. Bandyopadhyay, A. Dutta et al., “Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes,” Journal of Medical Microbiology, vol. 56, no. 9, pp. 1213–1218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Arnoult, K. Akarid, A. Grodet, P. X. Petit, J. Estaquier, and J. C. Ameisen, “On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization,” Cell Death and Differentiation, vol. 9, no. 1, pp. 65–81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Dutta, G. Mandal, C. Mandal, and M. Chatterjee, “In vitro antileishmanial activity of Aloe vera leaf exudate: a potential herbal therapy in leishmaniasis,” Glycoconjugate Journal, vol. 24, no. 1, pp. 81–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Dutta, G. Mandal, C. Mandal, and M. Chatterjee, “Racemoside A, an antileishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania donovani,” Journal of Medical Microbiology, vol. 56, pp. 1196–1204, 2007. View at Google Scholar