Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 946298, 14 pages
http://dx.doi.org/10.1155/2013/946298
Research Article

Pomegranate Juice Augments Memory and fMRI Activity in Middle-Aged and Older Adults with Mild Memory Complaints

1Center for Cognitive Neurosciences, Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
2Center for Human Nutrition, David Geffen School of Medicine, and the UCLA Longevity Center, University of California, Los Angeles, Los Angeles, CA, USA

Received 17 March 2013; Accepted 14 May 2013

Academic Editor: Edwin L. Cooper

Copyright © 2013 Susan Y. Bookheimer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ward, H. M. Arrighi, S. Michels, and J. M. Cedarbaum, “Mild cognitive impairment: disparity of incidence and prevalence estimates,” Alzheimer's and Dementia, vol. 8, no. 1, pp. 14–21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Crook, R. T. Bartus, S. H. Ferris et al., “Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change-report of a National Institute of Mental Health Work Group,” Developmental Neuropsychology, vol. 2, pp. 261–276, 1986. View at Google Scholar
  3. G. J. Larrabee and T. H. Crook III, “Estimated prevalence of age-associated memory impairment derived from standardized tests of memory function,” International Psychogeriatrics, vol. 6, no. 1, pp. 95–104, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Seeman and X. Chen, “Risk and protective factors for physical functioning in older adults with and without chronic conditions: MacArthur studies of successful aging,” Journals of Gerontology B, vol. 57, no. 3, pp. S135–S144, 2002. View at Google Scholar · View at Scopus
  5. R. S. Sohal, R. J. Mockett, and W. C. Orr, “Mechanisms of aging: an appraisal of the oxidative stress hypothesis,” Free Radical Biology and Medicine, vol. 33, no. 5, pp. 575–586, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Bokov, A. Chaudhuri, and A. Richardson, “The role of oxidative damage and stress in aging,” Mechanisms of Ageing and Development, vol. 125, no. 10-11, pp. 811–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Butterfield, M. L. Bader Lange, and R. Sultana, “Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 924–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Perkins, H. C. Hendrie, C. M. Callahan et al., “Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination survey,” American Journal of Epidemiology, vol. 150, no. 1, pp. 37–44, 1999. View at Google Scholar · View at Scopus
  9. K. H. Masaki, K. G. Losonczy, G. Izmirlian et al., “Association of vitamin E and C supplement use with cognitive function and dementia in elderly men,” Neurology, vol. 54, no. 6, pp. 1265–1272, 2000. View at Google Scholar · View at Scopus
  10. M. C. Morris, D. A. Evans, J. L. Bienias et al., “Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study,” Journal of the American Medical Association, vol. 287, no. 24, pp. 3230–3237, 2002. View at Google Scholar · View at Scopus
  11. F. Grodstein, J. Chen, and W. C. Willett, “High-dose antioxidant supplements and cognitive function in community-dwelling elderly women,” The American Journal of Clinical Nutrition, vol. 77, no. 4, pp. 975–984, 2003. View at Google Scholar · View at Scopus
  12. A. Koudinov, E. Kezlya, N. Koudinova, and T. Berezov, “Amyloid-β, Tau protein, and oxidative changes as a physiological compensatory mechanism to maintain CNS plasticity under Alzheimer's disease and other neurodegenerative conditions,” Journal of Alzheimer's Disease, vol. 18, no. 2, pp. 381–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. W. K. Summers, R. L. Martin, M. Cunningham, V. L. Deboynton, and G. M. Marsh, “Complex antioxidant blend improves memory in community-dwelling seniors,” Journal of Alzheimer's Disease, vol. 19, no. 2, pp. 429–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Krikorian, T. A. Nash, M. D. Shidler, B. Shukitt-Hale, and J. A. Joseph, “Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment,” British Journal of Nutrition, vol. 103, no. 5, pp. 730–734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. P. P. Zandi, J. C. Anthony, A. S. Khachaturian et al., “Reduced risk of Alzheimer disease in users of antioxidants vitamin supplements: the Cache County study,” Archives of Neurology, vol. 61, no. 1, pp. 82–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Laurin, K. H. Masaki, D. J. Foley, L. R. White, and L. J. Launer, “Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia Aging Study,” American Journal of Epidemiology, vol. 159, no. 10, pp. 959–967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. K. Jae, N. Cook, J. Manson, J. E. Buring, and F. Grodstein, “A randomized trial of vitamin E supplementation and cognitive function in women,” Archives of Internal Medicine, vol. 166, no. 22, pp. 2462–2468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Kang, N. R. Cook, J. E. Manson, J. E. Buring, C. M. Albert, and F. Grodstein, “Vitamin E, Vitamin C, Beta carotene, and cognitive function among women with or at risk of cardiovascular disease: the women's antioxidant and cardiovascular study,” Circulation, vol. 119, no. 21, pp. 2772–2780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Luchsinger, M.-X. Tang, S. Shea, and R. Mayeux, “Antioxidant vitamin intake and risk of Alzheimer disease,” Archives of Neurology, vol. 60, no. 2, pp. 203–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, and Y. Jiang, “Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay,” Nutrition Research, vol. 23, no. 12, pp. 1719–1726, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Wang, I. Santa-Maria, L. Ho et al., “Grape derived polyphenols attenuate Tau neuropathology in a mouse model of alzheimer's disease,” Journal of Alzheimer's Disease, vol. 22, no. 2, pp. 653–661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Feng, S. G. Yang, X. T. Du et al., “Ellagic acid promotes Aβ42 fibrillization and inhibits Aβ42-induced neurotoxicity,” Biochemical and Biophysical Research Communications, vol. 390, no. 4, pp. 1250–1254, 2009. View at Google Scholar
  23. J. A. Joseph, N. A. Denisova, G. Arendash et al., “Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model,” Nutritional Neuroscience, vol. 6, no. 3, pp. 153–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. T. West, M. Atzeva, and D. M. Holtzman, “Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury,” Developmental Neuroscience, vol. 29, no. 4-5, pp. 363–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. D. R. Campos-Esparza and M. A. Torres-Ramos, “Neuroprotection by natural polyphenols: molecular mechanisms,” Central Nervous System Agents in Medicinal Chemistry, vol. 10, no. 4, pp. 269–277, 2010. View at Google Scholar · View at Scopus
  26. R. E. Hartman, A. Shah, A. M. Fagan et al., “Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer's disease,” Neurobiology of Disease, vol. 24, no. 3, pp. 506–515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Choi, J.-H. Lee, H. J. Heo et al., “Punica granatum protects against oxidative stress in PC12 cells and oxidative stress-induced alzheimer's symptoms in mice,” Journal of Medicinal Food, vol. 14, no. 7-8, pp. 695–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. P. Seeram, M. Aviram, Y. Zhang et al., “Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States,” Journal of Agricultural and Food Chemistry, vol. 56, no. 4, pp. 1415–1422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Guo, J. Wei, J. Yang, J. Xu, W. Pang, and Y. Jiang, “Pomegranate juice is potentially better than apple juice in improving antioxidant function in elderly subjects,” Nutrition Research, vol. 28, no. 2, pp. 72–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Rubio, S. Yucra, M. Gasco, and G. F. Gonzales, “Doseresponse effect of black maca (Lepidium meyenii) in mice with memory impairment induced by ethanol,” Toxicology Mechanisms and Methods, vol. 21, no. 8, pp. 628–634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Papandreou, A. Dimakopoulou, Z. I. Linardaki et al., “Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity,” Behavioural Brain Research, vol. 198, no. 2, pp. 352–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. W. Weiner, C. Sadowsky, J. Saxton et al., “Magnetic resonance imaging and neuropsychological results from a trial of memantine in Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 4, pp. 425–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. P. M. Thompson, K. M. Hayashi, R. A. Dutton et al., “Tracking Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 1097, pp. 183–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. Burggren, B. Renner, M. Jones et al., “Thickness in entorhinal and subicular cortex predicts episodic memory decline in mild cognitive impairment,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 956053, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. Saykin, L. A. Flashman, S. A. Frutiger et al., “Neuroanatomic substrates of semantic memory impairment in Alzheimer's disease: patterns of functional MRI activation,” Journal of the International Neuropsychological Society, vol. 5, no. 5, pp. 377–392, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Y. Bookheimer, M. H. Strojwas, M. S. Cohen et al., “Patterns of brain activation in people at risk for Alzheimer's disease,” New England Journal of Medicine, vol. 343, no. 7, pp. 450–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. R. A. Sperling, J. F. Bates, E. F. Chua et al., “fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 74, no. 1, pp. 44–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. B. C. Dickerson, D. H. Salat, J. F. Bates et al., “Medial temporal lobe function and structure in mild cognitive impairment,” Annals of Neurology, vol. 56, no. 1, pp. 27–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. W. Bondi, W. S. Houston, L. T. Eyler, and G. G. Brown, “fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease,” Neurology, vol. 64, no. 3, pp. 501–508, 2005. View at Google Scholar · View at Scopus
  40. S. Erk, A. Spottke, A. Meisen, M. Wagner, H. Walter, and F. Jessen, “Evidence of neuronal compensation during episodic memory in subjective memory impairment,” Archives of General Psychiatry, vol. 68, no. 8, pp. 845–852, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. J. Saykin, H. A. Wishart, L. A. Rabin et al., “Cholinergic enhancement of frontal lobe activity in mild cognitive impairment,” Brain, vol. 127, no. 7, pp. 1574–1583, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Lorenzi, A. Beltramello, N. B. Mercuri et al., “Effect of memantine on resting state default mode network activity in Alzheimer's disease,” Drugs and Aging, vol. 28, no. 3, pp. 205–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. T. Francis, K. Head, P. G. Morris, and I. A. Macdonald, “The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people,” Journal of Cardiovascular Pharmacology, vol. 47, supplement 2, pp. S215–S220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Buschke and P. Altman Fuld, “Evaluating storage, retention and retrieval in disordered memory and learning,” Neurology, vol. 24, no. 11, pp. 1019–1025, 1974. View at Google Scholar · View at Scopus
  45. D. Wechsler, Wechsler Memory Scale, The Psychological Corporation, San Antonio, Tex, USA, 3rd edition, 1997.
  46. S. M. Henning, Y. Zhang, N. P. Seeram et al., “Antioxidant capacity and phytochemical content of herbs and spices in dry, fresh and blended herb paste form,” International Journal of Food Sciences and Nutrition, vol. 62, no. 3, pp. 219–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. N. P. Seeram, S. M. Henning, Y. Zhang, M. Suchard, Z. Li, and D. Heber, “Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours,” Journal of Nutrition, vol. 136, no. 10, pp. 2481–2485, 2006. View at Google Scholar · View at Scopus
  48. A. D. Ekstrom and S. Y. Bookheimer, “Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain,” Learning and Memory, vol. 14, no. 10, pp. 645–654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. Joseph, B. Shukitt-Hale, N. A. Denisova et al., “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” Journal of Neuroscience, vol. 19, no. 18, pp. 8114–8121, 1999. View at Google Scholar · View at Scopus
  50. J. A. Joseph, N. A. Denisova, G. Arendash et al., “Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model,” Nutritional Neuroscience, vol. 6, no. 3, pp. 153–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Goyarzu, D. H. Malin, F. C. Lau et al., “Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats,” Nutritional Neuroscience, vol. 7, no. 2, pp. 75–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Afaq, M. Saleem, C. G. Krueger, J. D. Reed, and H. Mukhtar, “Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-κB pathways and inhibits skin tumorigenesis in CD-1 mice,” International Journal of Cancer, vol. 113, no. 3, pp. 423–433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. J. H. Callicott, V. S. Mattay, A. Bertolino et al., “Physiological characteristics of capacity constraints in working memory as revealed by functional MRI,” Cerebral Cortex, vol. 9, no. 1, pp. 20–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Zarahn, B. Rakitin, D. Abela, J. Flynn, and Y. Stern, “Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli,” Cerebral Cortex, vol. 15, no. 3, pp. 303–316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Tomasi, T. Ernst, E. C. Caparelli, and L. Chang, “Practice-induced changes of brain function during visual attention: a parametric fMRI study at 4 Tesla,” NeuroImage, vol. 23, no. 4, pp. 1414–1421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Huang, F. Du, Y. Y. Shih, Q. Shen, F. Gonzalez-Lima, and T. Q. Duong, “Methylene blue potentiates stimulus-evoked fMRI responses and cerebral oxygen consumption during normoxia and hypoxia,” Neuroimage, vol. 72, pp. 237–242, 2013. View at Google Scholar
  57. B. R. Bitner, D. C. Marcano, J. M. Berlin et al., “Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury,” ACS Nano, vol. 6, no. 9, pp. 8007–8014, 2012. View at Google Scholar
  58. M. S. Azzubaidi, A. K. Saxena, N. A. Talib, Q. U. Ahmed, and B. B. Dogarai, “Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion,” Acta Neurobiologiae Experimentalis, vol. 72, no. 2, pp. 154–165, 2012. View at Google Scholar
  59. S. T. Francis, K. Head, P. G. Morris, and I. A. Macdonald, “The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people,” Journal of Cardiovascular Pharmacology, vol. 47, supplement 2, pp. S215–S220, 2006. View at Publisher · View at Google Scholar · View at Scopus