Geofluids

Geofluids / 2019 / Article
Special Issue

Geothermal Systems: Interdisciplinary Approaches for an Effective Exploration

View this Special Issue

Research Article | Open Access

Volume 2019 |Article ID 3031586 | 14 pages | https://doi.org/10.1155/2019/3031586

Evaluation of Caldera Hosted Geothermal Potential during Volcanism and Magmatism in Subduction System, NE Japan

Academic Editor: Matteo Lupi
Received25 May 2018
Revised20 Sep 2018
Accepted26 Oct 2018
Published21 Jan 2019

Abstract

Deep-seated geothermal reservoirs beneath calderas have high potential as sources of renewable energy. In this study, we used an analysis of melt inclusions to estimate the amount of water input to the upper crust and quantify the properties of a deep-seated geothermal reservoir within a fossil caldera, the late Miocene Fukano Caldera (formation age 8–6 Ma), Sendai, NE Japan. Our research shows that Fukano Caldera consists of the southern part and northern part deposits which differ in the age and composition. The northern deposits are older and have higher potassium and silica contents than the southern deposits. Both the northern and southern deposits record plagioclase and plagioclase–quartz differentiation and are classified as dacite–rhyolite. The fossil magma chamber underlying the caldera is estimated to have a depth of ~2–10 km and a water content of 3.3–7.0 wt.%, and when the chamber was active it had an estimated temperature of 750°C–795°C. The water input into the fossil magma chamber is estimated at 2.3–7.6 t/yr/m arc length based on the magma chamber size the water content in the magma chamber and the length of volcanism periods of Fukano Caldera, NE Japan arc. The total amount of water that is stored in the chamber is ~1014 kg. The chamber is saturated in water and has potential as a deep-seated geothermal reservoir. Based on the shape of the chamber, the reservoir measures ~10 km × 5 km in the horizontal dimension and is 7–9 km in vertical extent. The 0th estimate shows that the reservoir can hold the electric energy equivalent of 33–45 GW over 30 years of power generation. Although the Fukano reservoir has great potential, commercial exploitation remains challenging owing to the corrosive nature of the magmatic fluids and the uncertain permeability network of the reservoir.

1. Introduction

The supercritical geothermal potential that is located near or below the brittle–ductile transition zone has attracted much research interest in recent years [1] because such a supercritical geothermal system could yield high well productivity owing to a higher fluid enthalpy of >150–225°C [24]. Increasing the enthalpy of fluid could improve the energy productivity of a power plant; e.g., in Iceland, it has been numerically estimated that a supercritical reservoir could produce about tenfold the amount of energy of currently producing wells [1, 5]. In Japan, an attempt to drill to supercritical conditions was made in the Kakkonda Geothermal Field in 1994–1995 [6]. Well WD-1a was drilled to a depth of 3729 m with a bottom-hole temperature of 500°C [1, 7]. The brittle–ductile transition in this well was indicated by an inflection in the temperature profile at ~380°C [8]. This attempt has opened up the possibility of drilling into crust with supercritical conditions.

However, the extraction of energy from supercritical geothermal systems remains challenging on account of the permeability of the host materials and the characteristics of the fluids. Initial studies suggested that permeability shows a marked decrease at the brittle–ductile transition (BDT) [911]. However, later investigations showed that sufficient permeability is maintained at the BDT, with evidence being found from outcrops [12, 13], laboratory experiments [14, 15], and geophysical studies [16]. The primary limiting factor is the properties of the fluids produced in supercritical geothermal systems, which are dominated by magmatic fluids. Such fluids are corrosive, meaning that fluid extraction using current technologies is challenging. Therefore, more in-depth research needs to be performed to overcome this problem. Although commercial utilization is not yet possible, an understanding of the properties of supercritical geothermal systems, including the evaluation and estimation of the energy potential, should provide us with a better picture of this prospective energy source.

At a large scale, water supply and budget are essential aspects of a subduction system as they affect the productivity of the arc magma, the cycling of volatiles in the mantle, and the rheology of the mantle [17]. The transportation and distribution of a large volume of water beneath an arc affect the seismicity, rheology, ore deposits, and geothermal energy of the overlying arc crust [18]. Knowledge of magmatic processes is essential to understanding deep-seated geothermal reservoirs and to estimate water inputs to the upper crust. Melt inclusions (MIs) in caldera-fill sediments provide petrological evidence of magmatic processes in the crust. As these inclusions formed at high pressure and are contained within a relatively uncompressible mineral host, MIs preserve the pre-eruption volatile composition of the magma [19].

Extensive studies of silicate MIs have been conducted to understand petrogenetic processes such as assimilation [20] and fractional crystallization [21]. The characteristics of silicate MIs and the methods used for their analysis have been summarized in reviews [19, 22]. Silicate MIs contain information on the dissolved volatile concentrations of igneous rocks. A variety of analytical and thermobarometric methods can be used to study MIs, leading to a better understanding of magma volatile concentrations, the compositions of exsolved magmatic fluids, and the pressure–temperature conditions under which magmas crystallize [19]. Silicate MIs from a single phenocryst (when analyzed for volatile content) might represent the composition of the melt at the time of crystallization and help determine whether variations in volatile concentrations are consistent with a specific physical–chemical magmatic process [22]. A recent study [23] of silicate MIs in deposits of the Shirasawa caldera, NE Japan, showed that MIs could be useful for the assessment of geothermal resources.

NE Japan (Tohoku District) contains ca. 45% of the geothermal potential of the entire country [24, 25]. The ductile zone is relatively shallow around active volcanic fronts (<3 km) [10], and at least 80 caldera collapse structures are recognized in NE Japan, with these structures having a close genetic relationship with the occurrence of granitic plutons [26]. The mass balance analysis of crust–melt reaction zones [13] indicates that the original >5.0–5.6 wt.% of H2O within the arc magma is partitioned into ≤3.7 wt.% H2O consumed by the hydration of local crustal material and ≥1.3–1.9 wt.% H2O expelled to the overlying upper crust. The ascent of magmatic water may increase pore fluid pressure, thereby reducing the strength of the crust, or it may generate hydrothermal fluids that could produce ore deposits [27] and/or deep geothermal resources within the crust [13].

In this study, MIs were used to evaluate the properties of a potential geothermal reservoir (magma chamber) in Fukano Caldera, NE Japan, including (1) the magmatic processes that occurred within the magma chamber, (2) the distribution of the geothermal reservoir, and (3) estimations of the water input to the upper crust and of the geothermal energy.

2. Geological Setting

Fukano Caldera is located ~10 km east of the present volcanic front, near Sendai City, NE Japan (Figure 1). The most recent period of volcanic activity in NE Japan is an island-arc stage (13–0 Ma), which can be divided into submarine volcanism, late Miocene caldera formation, Pliocene caldera formation, and a compressional volcanic arc phase (the present active volcanic front). These changes in the mode of igneous activity are correlated with the stress regime, which is controlled mainly by Eurasia and Pacific plate motion, and with the evolutionary path typical of arc magmatism. Fukano Caldera is classified within the late Miocene Caldera Group, which has a close genetic relationship with granitic plutons [26]. This caldera was chosen because of the proximity to the city compared with the present/recent volcanic front and the availability of geophysical data.

Fukano Caldera contains two calderas: Fukano Caldera itself (the northern part) and Tenjin Caldera (the southern part). In plain view, Fukano and Tenjin calderas have elliptical shapes, elongate N–S (Figure 1). The major and minor axes of these elliptical shapes are 10 and 5 km long, respectively. Fukano Caldera has been active since ~8–7 Ma, with activity in Tenjin Caldera commencing later at ~7–6 Ma. The timing of these events is based on the local stratigraphy and fossil data [2830]. The Akiu Group (including the Fukano and Tenjin formations) unconformably overlies the Natori Group (Tsunaki Formation; 10.0–8.3 Ma) and is overlain unconformably by the Sendai Group (~6.4 Ma), as determined by fission track dating, planktonic foraminifera, and diatom analyses [29].

In this study, Fukano and Tenjin calderas are termed the northern and southern parts of Fukano Caldera, respectively, based on the regions in which sampling was conducted (Figure 1). The Sakunami Fault bounds the western margin of the two-caldera structure. This fault comprises two parallel fault systems. One trends N–S and dips 40°–80° to the west, and it forms the boundary between the Aone Formation (to the west) and the Sakunami Formation (to the east). A second fault, which dips 60°–80° to the east, marks the boundary between the Sakunami Formation and the caldera volcanic rocks (the Fukano Formation and the Tenjin Tuff Member). Pumice tuffs in a fine-grained matrix and laminated sandy tuffs are distributed near the Sakunami Fault. In contrast, the eastern margin of the caldera structure is overlain by cross-laminated sandy tuffs that dip gently to the west [31].

3. Materials and Methods

3.1. Analyzed Samples

Caldera-fill samples from the southern and northern parts of Fukano Caldera were obtained from 20 locations on the caldera from the margin to the center (Figure 1). The five samples taken from the southern part of the caldera (Tenjin Tuff Member of the Fukano Formation and the Motoisago Formation) consist of fine tuff and pumice tuff, with mineral assemblages of quartz, plagioclase, biotite, and magnetite. Apatite occurs as inclusions in quartz. Zircon crystals have been identified in the deposits of the Fukano and Tenjin formations through heavy liquid separation (R. Takashima, Tohoku University; pers. comm.).

The 15 samples taken from the northern part of the caldera (the Fukano, Shirasawa, and Imotoge formations) consist of pumice tuff, welded tuff, fine tuff, muddy fine tuff, volcanic breccia, and pyroclastic breccia, with mineral assemblages of quartz, plagioclase, alkali feldspar, biotite, hornblende, and magnetite. Apatite occurs as inclusions in quartz.

The MIs examined in this study were all hosted in quartz crystals. MI diameters range from <1 to 200 μm, and they commonly occur as homogeneous glassy inclusions. However, bubbles and daughter minerals are also present in some samples and are termed “crystalline inclusions” (Figure 2; Table 1). The crystalline inclusions were not suitable for electron probe and water content analyses owing to the inhomogeneous nature of the inclusions. The crystalline inclusions therefore underwent homogenization treatment using a Linkam TS1500 heating stage with a maximum temperature of 1500°C and maximum quenching rates of 100°C/min. So-called “hourglass” inclusions also appear in some samples (Figure 2(b)). An hourglass inclusion is a melt inclusion that consists of glass or crystallized melt connected to the exterior of the host crystal by a canal or capillary [33], allowing volatiles and other elements to diffuse at the time of crystallization. Therefore, this type of inclusion was not analyzed in the present study.


SampleGroup1IDRock classification, formationSample conditionMelt inclusion morphology2Bubble2Daughter mineral2Hourglass2
GlassyCrystalline
RoundedElongatedAngularRoundedAngular

160411-1aSP111aFine tuff, Fukano F. (Tenjin)FreshXXXOO
160411-1bSP111bPumice tuff, Fukano F. (Tenjin)FreshXXXOO
160411-2aSP112aPumice tuff, Motosaigo F.FreshOXXXX
160411-3aSP113aPumice tuff, Motosaigo F.FreshOXXX
160411-3bSP113bPumice tuff, Motosaigo F.FreshOXXX
160804-1NP041Pumice tuff, Fukano–Shirasawa F.FreshOXXXX
160804-2NP042Pumice tuff, Fukano F.FreshOXX
160804-3sNP043sStream sedimentFreshOX
160804-3NP043Pyroclastic breccia, Fukano F.FreshOX
160804-4NP044Volcanic breccia, Fukano F.FreshOXO
160804-5NP045Fine tuff, Fukano F.FreshOXXXX
160804-6NP046Muddy fine tuff, Fukano F.FreshXXXX
160804-7NP047Welded tuff, Imotoge F.FreshOXXXXO
160804-8NP048Muddy fine tuff, Fukano F.AlteredXXXOXOX
160804-9NP049Pumice tuff, Fukano F.FreshOXXXX
160809-1NP091Pumice tuff, Fukano F.FreshXX
160809-3NP093Muddy fine tuff, Fukano F.FreshXXOXOOO
160809-4NP094Argillized pumice tuff/Fukano F.AlteredO
160809-5NP095Strongly hydrothermally altered rocks, Fukano F.AlteredO
160809-6NP096Volcanic breccia, Fukano F.AlteredXX

1NP = northern part of the caldera; SP = southern part of the caldera. 2X = absent; ∆ = exists; and O = abundant.
3.2. Analytical Procedures

Quartz phenocrysts were handpicked, washed ultrasonically in water, and dried overnight at room temperature. The quartz was then mounted in resin and polished until the MIs were exposed at the surface. The samples were analyzed in the following order to avoid damage and element loss during measurement: Fourier transform–infrared (FT–IR) spectroscopy, secondary electron microscopy–energy-dispersive spectroscopy (SEM–EDS), and laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS).

Major element compositions (SiO2, TiO2, Al2O3, MnO, MgO, CaO, Na2O, K2O, and P2O5) for MIs were determined using a JEOL JSM-7001F SEM–EDS at the Department of Earth Science, Tohoku University, Japan. The analytical conditions were an accelerating voltage of 15 kV, a probe current of 1.4 nA, a magnification of 5000x, and a working distance of 10.00 mm. Sodium loss associated with alkali migration during electron bombardment was prevented by using a low probe current and low magnification.

Trace element concentrations were measured for 10 MIs in two samples from the southern part of the caldera and for 3 MIs in one sample from the northern part. Trace element (Cs, Rb, Ba, Th, U, Nb, Ta, La, Ce, Pb, Pr, Sr, Nd, Sm, Zr, Hf, Eu, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb, and Lu) concentrations were determined using an Analyte Excite excimer laser and a PerkinElmer ELAN 9000 Quadrupole ICP–MS at the Graduate School of Environmental Studies, Tohoku University, Japan. These analyses used a laser wavelength of 193 nm, a laser spot diameter of 50 μm, 80% power, a repetition rate of 20 Hz, and an ablation time of 15 s. Standard samples (NIST 611, 612, and 614) were used to determine the detection limits of the instrumental measurements. MIs with diameters of >100 μm were chosen for analysis to accommodate the laser spot diameter and to prevent ablation of the surrounding quartz.

Water and CO2 contents were determined using a Thermo Scientific Nicolet iN10 transmission FT–IR at the Department of Earth Science, Tohoku University, Japan. These analyses used an aperture of 30 μm × 30 μm and wave numbers of 675–6000 cm−1. Infrared absorption bands were assigned as 1630 cm−1 for the bending mode of H2O, 3600 cm−1 for the stretching mode of H2O and OH, and 5230 and 4500 cm−1 for the combination of the stretching and bending modes of H2O and OH [34], respectively. Given that the 3600 cm−1 peak was oversaturated in this study, the 5230 and 4500 cm−1 absorption bands were used.

4. Results and Discussion

4.1. Major Elements

Major elements were measured for 232 MIs in samples from the northern part of Fukano Caldera and 81 MIs in samples from the southern part. Melt from the northern region is classified as low–high-alkali tholeiitic dacite–rhyolite of low–medium-K composition (SiO2: 70.53–77.02 wt.%; K2O: 0.98–3.07 wt.%), whereas magma from the southern region is classified as low-alkali tholeiitic dacite–rhyolite of low-K composition (SiO2: 71.59–75.69 wt.%; K2O: 1.03–2.29 wt.%) (for details, see Figure 3, Table 2, and Supplementary Table St-1).


GroupSampleIdPointsMajor elements (wt.%)
SiO2TiO2Al2O3FeOMnOMgOCaONa2OK2OP2O5Total

Southern part160411-1a111a1604111a-g5-1b73.840.0010.751.540.000.251.284.391.690.4094.13
160411-1b111b1604111b-4-174.600.2710.181.070.050.001.434.421.260.0893.37
160411-2a112a2aG174.590.0111.031.450.040.261.744.241.26n.d94.55
2aG1b75.030.1211.051.330.070.201.804.371.18n.d95.05
2aG274.360.1511.181.570.100.101.814.121.240.0294.64
2aG375.330.0411.221.310.150.171.724.211.18n.d95.23
2aG4bb73.740.1710.891.640.050.191.633.521.22n.d93.00
2aG4a75.170.3211.111.580.020.161.773.721.28n.d95.03
160411-3a113a3aG2a274.610.0210.941.780.050.171.484.451.23n.d94.73
3aG3a173.660.2610.981.560.080.181.734.401.24n.d94.09
3aG473.720.2211.041.390.190.221.744.281.13n.d93.74
3aG5a74.210.1310.871.44n.d0.211.743.971.18n.d93.57
3aG5b272.090.2211.101.440.040.231.763.771.40n.d91.99
3aG5c72.650.2610.791.440.060.241.654.031.22n.d92.28
160411-3b113b3b#3G374.050.3110.731.250.140.241.843.891.20n.d93.60
3b#3G472.290.1111.141.62n.d0.201.853.591.28n.d91.82
3b#3G572.780.2811.271.530.060.321.974.021.11n.d93.25
3b#3G672.860.2111.031.360.080.231.644.191.22n.d92.79
3b#3G7a72.240.1610.731.62n.d0.191.694.011.32n.d91.83
3b#3G7b73.690.1311.071.530.060.181.583.921.24n.d93.26

Northern part160804-1041041G1a-172.930.1511.071.520.120.171.644.001.14n.d92.62
041G1b73.130.2210.901.360.190.201.633.851.180.0792.74
160804-2042042G173.310.1210.871.220.140.191.803.991.150.0292.82
042G2a73.320.0810.901.38n.d0.221.763.941.14n.d92.58
042G2b73.910.3111.101.600.070.141.724.011.14n.d93.89
160804-3043043G1a174.030.1011.150.920.030.111.003.972.76n.d94.05
043G10a73.140.1811.531.080.130.181.073.982.79n.d94.06
043G11a74.370.2211.090.7300.130.923.912.72n.d93.99
160804-3s043s043sG173.920.2011.301.620.010.241.923.841.52n.d94.47
043sG2b74.890.0611.011.370.120.141.304.011.600.0294.54
043sG3a76.070.0310.841.480.030.220.844.281.74n.d95.50
160804-4044044G173.330.4110.821.720.100.231.743.961.280.0193.60
044G2a73.730.0710.831.000.010.120.954.022.61n.d93.32
044G373.970.2510.641.660.120.281.913.901.290.0194.03
160804-5045045G1a74.680.1111.311.410.150.212.064.261.18n.d95.23
045G1a74.680.1111.311.410.150.212.064.261.18n.d95.23
045G1b74.770.2111.181.65n.d0.161.804.191.18n.d95.03
160804-6046046G172.960.0511.001.510.030.251.434.171.21n.d92.55
160804-704747G1a273.080.1510.801.750.170.331.724.171.17n.d93.25
47G1b73.050.2210.571.750.100.151.773.901.16n.d92.59
47G2a173.910.1110.771.240.140.080.774.762.04n.d93.72
160804-8048048HSG175.090.2310.701.430.020.131.375.051.49n.d95.39
160804-9049049G1a75.030.2310.831.420.090.121.494.371.190.0794.83
049G1b75.120.1611.181.26n.d0.191.504.421.27n.d94.84
049G573.690.1111.141.390.040.251.704.131.250.0193.72
160809-1091091G2a73.510.2310.731.550.050.131.384.171.620.0793.43
091G2b73.620.2310.591.340.120.161.513.891.830.0293.32
160809-3093093HSG1b74.090.2311.701.510.020.151.405.051.49n.d95.53
093HSG1c75.770.2310.351.440.190.151.044.261.45n.d94.84
160809-4094Q16b-171.660.3110.351.21n.d0.231.464.341.990.0891.60
Q16a-173.010.3310.701.800.110.331.684.141.970.0894.16
160809-5095095G1a74.610.2111.061.640.110.251.933.931.250.0294.99
095G1b74.160.1910.711.510.010.261.774.111.40.0394.16
160809-6096096G6b73.890.2210.981.58n.d0.211.694.131.16n.d93.69
096G8b72.500.2510.691.490.050.121.652.842.49n.d91.93

The major element compositions of MIs were also used to calculate the crystallization pressures of the host quartz. The pressure was estimated using the DERP (determining rhyolite pressure) [37] geobarometer. This geobarometer is based on the pressure dependence of the cotectic curve separating the quartz and feldspar stability fields in the rhyolite system Qtz–Ab–Or(–An–H2O). DERP is calibrated for pressures in the range 50–500 MPa and takes into account the effect of normative An content as well as of water content in melt [37]. As the geobarometer was applied to MIs that were in direct contact with one mineral only (i.e., quartz), we cross-checked the congruence of the resulting pressure determination with the water saturation pressure (discussed in Magma Chamber Depth).

DERP was used to calculate pressures from the data of 313 melt inclusions. As the pressure estimation is dependent on the water content in the melt, we varied the water content from the lowest measured water content (3 wt.%) to the highest (7 wt.%) to estimate the uncertainty, which was determined to be ±25 MPa. The pressure calculated using this method varied from 0.7 to 450 MPa for the northern samples and from 0.7 to 511 MPa for the southern samples. Assuming that pressure follows the lithostatic gradient with a crustal density of 2.7 g/cm3, the crystallization depth ranged from 0.02 to 17 km and from 0.02 to 19 km for the northern and southern samples, respectively.

Histograms of quartz crystallization pressure were constructed for the northern and southern parts of the caldera (Figure 4(a)) to reveal the vertical distribution of pressure calculated using the MI data. The magma chamber model (Figure 4(b)) was based on the vertical distribution of the MIs (Figure 4(a)), with higher frequencies of crystallization pressure corresponding to wider sections of the magma chamber for each part of the caldera. The inferred depth of the magma chamber for the southern part of the caldera (~7 km) is slightly greater than that for the northern part (~5 km). However, given the uncertainty of the data (±25 MPa; ~1 km), both chambers are placed at a similar depth and might have formed a single magma chamber. The deposits of the northern part of the caldera (Fukano Formation, 8–7 Ma) are older and have a higher potassium content than the deposits of the southern part (Tenjin Tuff Member, 7–6 Ma) [28]. This may indicate the input of less-evolved magma into the chamber during the formation of the southern part deposits.

4.2. Trace Elements

The trace element concentrations of 10 MIs in two samples from the southern part of the caldera and for 3 MIs in one sample from the northern part were measured to determine the differentiation of the magma beneath Fukano Caldera and to estimate the magma chamber temperature. The concentrations were normalized to a basaltic andesite sample (ZA1011) from Zao Volcano [38] (see Supplementary Table St-2). This sample is expected to be compositionally similar to the parental magma of Fukano Caldera samples on account of its relatively close spatial proximity. To determine the differentiation patterns of the samples, the normalized concentrations were plotted on a spider diagram (Figure 5).

Except for two samples from the northern part of the caldera, which show higher concentrations of trace elements compared with the other samples, samples from both the northern and southern parts of the caldera have a close correlation to those of the Zao basaltic andesite with marked depletions and enrichment. Strontium and europium are depleted relative to the Zao basaltic andesite. Apart from europium and strontium, the trace elements in the Fukano Caldera samples are enriched relative to the Zao basaltic andesite (Figure 5).

The partition coefficients of strontium and europium are higher in plagioclase compared with other elements. As such, strontium and europium concentrations in magma decrease with plagioclase crystallization. Those elements with concentrations higher than the Zao basaltic andesite are presumed to have been affected by the crystallization of minerals such as quartz. Such elements are not compatible in quartz, meaning that their concentrations in the melt increase during quartz crystallization as SiO2 decreases.

Zircon saturation temperatures were calculated using a solubility model [39]. The calculations were conducted on six MIs from the northern and southern parts of the caldera (Supplementary Table St-4). The existence of zircon was confirmed to ensure that the samples were saturated in this phase. Because the zircon saturation thermometer [39] is calibrated only for subaluminous and peraluminous melt compositions, only the samples that fell within this compositional range were selected for the calculations. The results show no systematic difference in the zircon saturation temperature between the northern and southern part samples. The calculated temperatures vary from 750°C to 795°C, with an average magma temperature of ~774°C ± 18°C.

4.3. Water Contents

Water content was measured for 5 MIs from the northern part of the caldera and for 3 MIs from the southern part. MIs that were heated using the heating stage were avoided because of the potential loss of volatiles. The total water contents of MIs in the northern part vary from 4.2 to 7.0 wt.%, and those in the southern part from 3.3 to 7.0 wt.% (Figure 6(a), Supplementary Table St-3). CO2 absorbance could not be determined from either set of samples and was therefore presumed to be 0 ppm (Figure 6(b)).

The CO2–H2O saturation pressure is determined by the pressure of water saturation based on the measured water content in MIs using the formula provided by Liu et al. [40]. The formula expresses the temperature- and pressure-dependent H2O and CO2 solubility of rhyolite based on synthetic haplogranitic and natural rhyolitic melt experiments. In general, the water-saturated pressures range from 60 to 250 MPa (see Supplementary Table St-3), and the pressures calculated from major element data vary from 0.7 to 511 MPa but are clustered in the range 25–275 MPa. These data indicate that the samples from Fukano Caldera are mostly water-saturated.

4.4. Magma Chamber Depth

The depth of the magma chamber in this study, as described above, was estimated using the DERP geobarometer. Based on this method, magma chamber pressure estimates ranged from 0.7 to 511 MPa with an uncertainty of ±25 MPa. However, this method has a limited calibration that is restricted to the range 50–500 MPa (~2–18 km), so the pressures below and above this range were discarded. Although the samples fell within a wide range of pressure, the histogram (Figure 4) shows a cluster at pressures between 50 and 275 MPa (Figure 4), with ~2–10 km being the inferred depth range of the magma chamber.

The water saturation pressure ranges from 60 to 250 MPa (~2–9 km). These data agree with the quartz crystallization pressure of 50–275 MPa (~2–10 km) within the ±25 MPa error. The fact that most of the samples fall within the water saturation pressure indicates that the magma was saturated with water and may have been able to form a supercritical geothermal reservoir.

The ascent of water-saturated magma may promote the expulsion of supercritical water from the magma body into the overlying crust. The formation of a supercritical geothermal reservoir above the intrusion is controlled by the brittle–ductile transition temperature (), host rock permeability, and magma emplacement depth [41]. Increasing the (i.e., from 450°C to 550°C) creates a larger supercritical zone without dramatically changing the thermo-hydraulic conditions [41]. The host rock permeability strongly affects the extent of supercritical temperature. Supercritical-temperature resources have smaller extents in highly permeable (10−14 m2) host rock compared within moderately permeable (10−15 m2) host rocks because the rate of convective water circulation surpasses the ability of the intrusion to heat most of the circulating water to supercritical temperatures [41]. The location of magma emplacement influences whether the system above the intrusion exceeds the critical pressure. In Fukano Caldera, the emplacement of the magma chamber is estimated to be ~2–10 km (~50–275 MPa), above the critical pressure of water (~22 MPa). The brittle–ductile transition zone is observed at a temperature of ~380°C [8], above the critical temperature of water (374°C), and fluid migration at a depth of 4–6 km suggests the existence of an intermediate-permeability zone (10−15 m2) [14, 16] in the NE Japan region. Therefore, it is possible that a supercritical geothermal reservoir has formed beneath Fukano Caldera.

The above-mentioned petrological data are also in agreement with the seismic tomography map of Nakajima et al. [42] (Figure 7). A region of low seismic velocity is observed at depths of 5 to 10 km [42] (Figures 7(a) and 7(b)) and is consistent with the depth range of the magma chamber identified in the present study (~2–10 km). The existence of melt-filled pores can reduce seismic velocity and increase Poisson’s ratio independent of the shape of pores, whereas H2O-filled pores have a different effect on seismic velocity, especially on Poisson’s ratio, which is affected by the shape of the pores, specifically the aspect ratio, which is defined as the ratio of the minor radius to the major radius of fluid-filled oblate spheroidal pores [42]. H2O-filled pores with an aspect ratio of less than ~0.1 increase Poisson’s ratio and decrease the seismic velocity, giving the same effect as melt-filled pores, whereas H2O-filled pores with an aspect ratio of greater than ~0.1 will reduce Poisson’s ratio and decrease seismic velocity [43]. The observed region of low seismic velocity with slightly higher Poisson’s ratio at depths of ~5–10 km suggests the existence of melt- or H2O-filled pores [42].

4.5. Water Budget

Water plays an essential role in a subduction system, as it is a critical factor in the formation of magma and the storage of energy. Two studies that have investigated the amount of water subducted beneath the NE Japan arc [17, 44] estimated the water budget by using a slab-water-dehydration model to determine the amount and rate of water released from the slab during dehydration. The rate of water release from the slab in the NE Japan arc during subduction is estimated to be ~34 t/yr/m arc length [44]. Kimura and Nakajima [17] used the geochemical and petrological model Arc Basalt Simulator version 4 (ABS4) to calculate that about 38% of the ~34 t/yr/m (~13 t/y/m) migrates into the crust. In the present study, we estimated the amount of water input to the upper crust using MI data from the caldera system (Figure 8).

The northern and southern magma chambers of Fukano Caldera are estimated to occupy a depth range of 2–10 ± 1 km; that is, they have vertical extents of 7–9 km (Figure 4). To simplify the calculation, the northern and southern magma chambers were treated as a single large magma chamber. The extent of this magma chamber was estimated from the caldera rim structure, which extends for ~10 km N–S and ~5 km E–W. For a caldera with a roof aspect ratio of ≤1 (the ratio of the caldera diameter to the distance between the ground surface and the top of the magma chamber), the gravity-driven normal faults form as a border to the caldera and propagate from the surface to the magma chamber margin [4649] with vertical or subvertical dips of ~60°–90° [47, 50, 51]. Therefore, the lateral extent of the magma chamber can be estimated at ~9.7–10.0 km for the major axis and ~4.7–5.0 km for the minor axis.

The NE Japan arc extends N–S, and therefore, the length of the arc supplying water to the crust can be assumed as the width of the magma chamber in the N–S direction, which is 9.7–10 km. We assumed the water content of the magma chamber to be the same as those in the studied MIs (3.3–7.0 wt.%). We also assumed that the magma density is similar to the MI density, which was calculated using the formula of Okumura and Nakashima [34]. The density of magma varied from 2254 to 2306 kg/m3 (Supplementary Table St-3). To predict a yearly supply of water, we assumed that the accumulation period of the caldera was 3 Myr, based on the stratigraphic interval of the volcanic products [29] of the Akiu Group.

Using the above data and assumptions, the amount of water contained in the magma chamber is calculated to be 6.8 × 1013 to 2.3 × 1014 kg, which accumulated during a 3 Myr period along the 9.7–10 km arc length. Therefore, the yearly water input into the magma chamber is 2.3–7.6 t/yr/m arc length (Supplementary Calculation Sc-1). In the study of Kimura and Nakajima [17], it was assumed that hydration and water input along the arc are uniform. In our study, the estimation is based on only one caldera (Fukano Caldera); however, multiple calderas are present along the NE Japan arc, which have varying sizes and water contents as well as patterns of spatial distribution [26]. Throughout the NE Japan arc, calderas are dispersed in groups called “hot fingers” correlated to local hot regions within the mantle wedge [52], suggesting that conditions along the arc are heterogeneous. However, our estimate of the amount of water that is input into the upper-crustal magma chamber is of the same order as the subarc water input reported by Kimura and Nakajima [17] (13 t/yr/m).

Using the volume and temperature of the magma chamber, the probable geothermal energy can be estimated. The energy stored in the Fukano chamber reservoir was evaluated using the volumetric method [53, 54]. The calculation is based on the thermal energy in the rock and in the fluid that could be extracted based on the specified reservoir volume, reservoir temperature, and reference temperature (see Supplementary Calculation Sc-1 for details). The temperature of the magma chamber during crystallization was estimated above using the Zr saturation temperature (~774°C). However, this is not the actual present-day temperature because the magma chamber may have cooled down over the millions of years that have elapsed since crystallization. Therefore, the geothermal gradient (70°C/km) [45] of Shirasawa Caldera and its surrounding which represents the geothermal gradient beneath the ancient caldera were adopted to predict the present-day temperature of the reservoir (Figure 8).

As the Fukano chamber is a high-enthalpy reservoir, the reference depth (Zr) was set to a depth corresponding to a temperature of 150°C [24] using a geothermal gradient of 70°C/km. The average annual temperature of Sendai was taken as 12°C and set as the reference temperature (). The depth of the reservoir corresponding to a temperature of ~150°C in Fukano Caldera is therefore 2 km (152°C). This depth represents the high enthalpy reservoir. The maximum depth of the reservoir was set at 10 km (712°C), corresponding to the bottom of the magma chamber. The volumetric density of rocks + water was set at 2.7 J/cm3°C. The total reservoir energy () is calculated as 1.6 × 1018 kJ, which, with a 25% rate of recovery of energy, gives a result of 4 × 1017 kJ. To determine the energy that can be obtained from the reservoir, we first assumed that the depth of the borehole used for extracting the hot fluid is 3 km (220°C). The hot fluid that rises from this depth does so against gravity, meaning that some energy loss may occur during extraction. Therefore, we calculate the available work () based on the enthalpy at the well source and the reference. Also, energy loss will occur because of conversion efficiency of the power plant. For water-dominated systems, it is set to be ~0.4. Using this method, the amount of electric energy can be calculated, including the upper and lower bounds on reservoir energy. We calculate that the electrical energy that could be obtained from Fukano Caldera is 3.16–4.25 × 1016 kJ, and the electric energy obtained over 30 years of power generation is 33–45 GW (Supplementary Calculation Sc-1).

The estimation of geothermal energy is approximate because of the many simplifying assumptions that are made, such as the continuity of the magma chamber and the treatment of the reservoir as a water-dominated system regarding energy recovery rate and efficiency. The geothermal gradient may not be valid in such a deep system, and the reservoir is assumed to have sufficient permeability. Although commercial exploitation is not yet possible, the deep-seated geothermal reservoir beneath Fukano Caldera has a huge potential as an energy source in the future.

5. Conclusions

The Fukano Caldera fossil magma chamber in NE Japan lies at depths of 2–10 ± 1 km and has a water content of 3.3–7.0 wt.%. The rate at which water is supplied to the overlying crust during subduction in the NE Japan arc was used to estimate the amount of water accumulating in the fossil magma chamber, which is calculated to be 2.3–7.6 t/yr/m arc length. The magma chamber is saturated in water, and a 0-order estimation suggests that the energy potential is 33–45 GW over 30 years of power generation.

Our study shows that melt inclusion analysis is a useful tool in determining the magmatic processes and properties of a magma chamber as well as estimating the water budget within the crust. It is also reflecting the significance of deep-seated geothermal reservoir in the matter of energy potential. The energy potential of the deep-seated geothermal reservoir at Fukano Caldera is very high. However, the practical exploitation of this reservoir is not yet possible with current technology, given the challenges presented by the corrosive nature of the fluids and the uncertain permeability network of the reservoir. Further assessments of the Fukano reservoir and improvements in extraction technology will need to be made before its energy can be exploited.

Data Availability

The experimental data used to support the findings of this study are included in the supplementary data file.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

This research was supported by JST/JICA SATREPS and by JSPS KAKENHI Grant Number JP25000009. Our sincere thanks go to Nobuo Hirano (Graduate School of Environmental Studies, Tohoku University) for providing access to laboratories and research facilities. Without his support, this research would not have been possible.

Supplementary Materials

The supplementary material consists of one excel file. Included in this file are four supplementary tables and one supplementary calculation. Supplementary Table includes all of the measurement results (major element, trace element, and water content) and calculation results (zircon saturation temperature, water saturation pressure, melt inclusion density and the crystallization pressure per water contents) labeled with St-x (1–4): Supplementary Table-1 (St-1): major element composition and the crystallization pressure per water content of melt inclusion in Fukano Caldera. Supplementary Table-2 (St-2): trace element composition of melt inclusion in Fukano Caldera. Supplementary Table-3 (St-3): water content, water saturation pressure, and density of melt inclusion in Fukano Caldera. Supplementary Table-4 (St-4): zircon saturation temperature calculated after Watson and Harrison [35] shows the magma chamber temperature at the crystallization of the host quartz. Supplementary calculation labeled as Sc-1 consists of the water budget, the geothermal energy potential, and the illustration of magma chamber dimension. (Supplementary Materials)

References

  1. T. Reinsch, P. Dobson, H. Asanuma, E. Huenges, F. Poletto, and B. Sanjuan, “Utilizing supercritical geothermal systems : a review of past ventures and ongoing research activities,” Geotherm. Energy, vol. 5, no. 1, 2017. View at: Publisher Site | Google Scholar
  2. M. P. Hochstein, “Classification and assessment of geothermal resources,” in Small Geothermal resources - A guide to Development and Utilization, M. H. Dickson and M. Fanelli, Eds., pp. 31–59, UNITAR/UNDP Centre on small Energy Sources, 1990. View at: Google Scholar
  3. K. Nicholson, “Geothermal systems,” in Geothermal Fluids, pp. 1–18, Springer, Berlin Heidelberg, 1993. View at: Publisher Site | Google Scholar
  4. E. Kaya, S. J. Zarrouk, and M. J. O’Sullivan, “Reinjection in geothermal fields: a review of worldwide experience,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 47–68, 2011. View at: Publisher Site | Google Scholar
  5. G. O. Fridleifsson and W. A. Elders, “The Iceland Deep Drilling Project: a search for deep unconventional geothermal resources,” Geothermics, vol. 34, no. 3, pp. 269–285, 2005. View at: Publisher Site | Google Scholar
  6. H. Muraoka, T. Uchida, M. Sasada et al., “Deep geothermal resources survey program: igneous, metamorphic and hydrothermal processes in a well encountering 500°C at 3729 m depth, Kakkonda, Japan,” Geothermics, vol. 27, no. 5-6, pp. 507–534, 1998. View at: Publisher Site | Google Scholar
  7. K. Ikeuchi, N. Doi, Y. Sakagawa, H. Kamenosono, and T. Uchida, “High-temperature measurements in well WD-1A and the thermal structure of the kakkonda geothermal system, Japan,” Geothermics, vol. 27, no. 5-6, pp. 591–607, 1998. View at: Publisher Site | Google Scholar
  8. O. Kato, N. Doi, Y. Sakagawa, and T. Uchida, “Fracture systematics in and around well WD-1, kakkonda geothermal field, Japan,” Geothermics, vol. 27, no. 5-6, pp. 609–629, 1998. View at: Publisher Site | Google Scholar
  9. R. O. Foumier, “The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock,” Geophysical Research Letters, vol. 18, no. 5, pp. 955–958, 1991. View at: Publisher Site | Google Scholar
  10. N. Tsuchiya, H. Asanuma, A. Okamoto et al., “Fundamental study for beyond brittle geothermal reservoirs,” in Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 2015. View at: Google Scholar
  11. H. Saishu, A. Okamoto, and N. Tsuchiya, “The significance of silica precipitation on the formation of the permeable-impermeable boundary within Earth’s crust,” Terra Nova, vol. 26, no. 4, pp. 253–259, 2014. View at: Publisher Site | Google Scholar
  12. F. Higashino, T. Kawakami, M. Satish-Kumar et al., “Chlorine-rich fluid or melt activity during granulite facies metamorphism in the Late Proterozoic to Cambrian continental collision zone—an example from the Sør Rondane Mountains, East Antarctica,” Precambrian Research, vol. 234, pp. 229–246, 2013. View at: Publisher Site | Google Scholar
  13. M. Uno, A. Okamoto, and N. Tsuchiya, “Excess water generation during reaction-inducing intrusion of granitic melts into ultramafic rocks at crustal P–T conditions in the Sør Rondane Mountains of East Antarctica,” Lithos, vol. 284-285, pp. 625–641, 2017. View at: Publisher Site | Google Scholar
  14. N. Watanabe, T. Numakura, K. Sakaguchi et al., “Potentially exploitable supercritical geothermal resources in the ductile crust,” Nature Geoscience, vol. 10, no. 2, pp. 140–144, 2017. View at: Publisher Site | Google Scholar
  15. C. E. Manning and S. E. Ingebritsen, “Permeability of the continental crust: implications of geothermal data and metamorphic systems,” Reviews of Geophysics, vol. 37, no. 1, pp. 127–150, 1999. View at: Publisher Site | Google Scholar
  16. T. Okada, T. Matsuzawa, N. Umino et al., “Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: implications for crustal fluid distribution and crustal permeability,” Geofluids, vol. 15, pp. 293–309, 2015. View at: Publisher Site | Google Scholar
  17. J. I. Kimura and J. Nakajima, “Behaviour of subducted water and its role in magma genesis in the NE Japan arc: a combined geophysical and geochemical approach,” Geochimica et Cosmochimica Acta, vol. 143, pp. 165–188, 2014. View at: Publisher Site | Google Scholar
  18. P. Weis, T. Driesner, and C. A. Heinrich, “Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes,” Science, vol. 338, no. 6114, pp. 1613–1616, 2012. View at: Publisher Site | Google Scholar
  19. J. B. Lowenstern, “Application of silicate-melt inclusions to the study of magmatic volatiles,” Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada Short Course, vol. 23, pp. 71–99, 1995. View at: Google Scholar
  20. O. Reubi and J. Blundy, “Assimilation of plutonic roots, formation of high-K ‘exotic’ melt inclusions and genesis of andesitic magmas at volcán De Colima, Mexico,” Journal of Petrology, vol. 49, no. 12, pp. 2221–2243, 2008. View at: Publisher Site | Google Scholar
  21. D. W. Peate, I. U. Peate, M. C. Rowe, J. M. Thompson, and A. C. Kerr, “Petrogenesis of high-MgO lavas of the lower mull plateau group, Scotland: insights from melt inclusions,” Journal of Petrology, vol. 53, no. 9, pp. 1867–1886, 2012. View at: Publisher Site | Google Scholar
  22. C. Cannatelli, A. L. Doherty, R. Esposito, A. Lima, and B. De Vivo, “Understanding a volcano through a droplet: a melt inclusion approach,” Journal of Geochemical Exploration, vol. 171, pp. 4–19, 2016. View at: Publisher Site | Google Scholar
  23. T. Suzuki, M. Uno, S. Okumura, R. Yamada, and N. Tsuchiya, “Differentiation of eruptive magma in the late Miocene Shirasawa Caldera and present geothermal reservoir,” Journal of the Geothermal Research Society of Japan, vol. 39, pp. 25–37, 2017. View at: Google Scholar
  24. N. Tsuchiya, R. Yamada, and M. Uno, “Supercritical geothermal reservoir revealed by a granite–porphyry system,” Geothermics, vol. 63, pp. 182–194, 2016. View at: Publisher Site | Google Scholar
  25. N. Tsuchiya, R. Takeda, and N. Hirano, “Novel geothermal exploration techniques by thermoluminescence of minerals,” in Proceedings World Geothermal Congress 2015, pp. 3–6, Melbourne, Austrialia, April 2015. View at: Google Scholar
  26. T. Yoshida, “The evolution of arc magmatism in the NE Honshu arc, Japan,” Tohoku Geophysical Journal, vol. 36, pp. 131–149, 2001. View at: Google Scholar
  27. R. W. Henley and A. J. Ellis, “Geothermal systems ancient and modern: a geochemical review,” Earth-Science Reviews, vol. 19, no. 1, pp. 1–50, 1983. View at: Publisher Site | Google Scholar
  28. K. Otsuki, J. Nemoto, S. Hasegawa, and T. Yoshida, Geology of the Valley of Hirosegawa River, Sendai City Environment Bureau, Environmental Planning Division, 1994.
  29. O. Fujiwara, Y. Yanagisawa, T. Irizuki, and M. Shimamoto, Chronological Data for the Middle Miocene to Pliocene Sequence around the Southwestern Sendai Plain, with Special Reference to the Uplift History of the Ou Backbone Range Hiroki Hayashi, Tohru Danhara, Keisuke Fuse and Hideki Iwano, 2008.
  30. H. Okutsu, “On the stratigraphy and paleobotany of the Cenozoic plant beds of the Sendai area,” The science reports of the Tohoku University. Second series, Geology, vol. 26, pp. 1–35, 1955. View at: Google Scholar
  31. T. Takahashi, Y. Nagashashi, T. Yoshida, and Y. Yanagisawa, “P-192 Geology of Pliocene Fukano and Tenjin calderas at western part of Sendai city,” in Annual Meeting of the Geological Society of Japan, Chiba Prefecture, Japan, September 2004. View at: Publisher Site | Google Scholar
  32. M. Kitamura, T. Ishi, A. Sagawa, and H. Nakagawa, 1:50000 Geological Map ‘Sendai,’, Miyagi Perfecture, 1986.
  33. A. T. Anderson, “Hourglass inclusions: theory and application to the bishop rhyolitic tuff,” American Mineralogist, vol. 76, p. 530, 1991. View at: Google Scholar
  34. S. Okumura and S. Nakashima, “Molar absorptivities of OH and H2O in rhyolitic glass at room temperature and at 400–600°C,” American Mineralogist, vol. 90, no. 2-3, pp. 441–447, 2005. View at: Publisher Site | Google Scholar
  35. R. W. Le Maitre, B. Zanettin, B. Bonin, A. Streckeisen, M. J. Le Bas, and P. Bateman, Igneous Rocks: A Classification and Glossary of Terms. A 547 Classification of Rocks and Glossary of Terms, vol. 140, no. 3, Blackwell, 1989. View at: Publisher Site
  36. M. Best and E. Christiansen, Igneous Petrology, Blackwell Science, 2001.
  37. S. Wilke, F. Holtz, D. A. Neave, and R. Almeev, “The effect of anorthite content and water on quartz-feldspar cotectic compositions in the rhyolitic system and implications for geobarometry,” Journal of Petrology, vol. 58, no. 4, pp. 789–818, 2017. View at: Publisher Site | Google Scholar
  38. Y. Tatsumi, T. Takahashi, Y. Hirahara et al., “New insights into andesite genesis: the role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao Volcano, NE Japan,” Journal of Petrology, vol. 49, no. 11, pp. 1971–2008, 2008. View at: Publisher Site | Google Scholar
  39. E. B. Watson and T. M. Harrison, “Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types,” Earth and Planetary Science Letters, vol. 64, no. 2, pp. 295–304, 1983. View at: Publisher Site | Google Scholar
  40. Y. Liu, Y. Zhang, and H. Behrens, “Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts,” Journal of Volcanology and Geothermal Research, vol. 143, no. 1-3, pp. 219–235, 2005. View at: Publisher Site | Google Scholar
  41. S. Scott, T. Driesner, and P. Weis, “Geologic controls on supercritical geothermal resources above magmatic intrusions,” Nature Communications, vol. 6, no. 1, pp. 1–6, 2015. View at: Publisher Site | Google Scholar
  42. J. Nakajima, A. Hasegawa, S. Horiuchi, K. Yoshimoto, T. Yoshida, and N. Umino, “Crustal heterogeneity around the Nagamachi-Rifu fault, northeastern Japan, as inferred from travel-time tomography,” Earth, Planets and Space, vol. 58, no. 7, pp. 843–853, 2006. View at: Publisher Site | Google Scholar
  43. Y. Takei, “Effect of pore geometry on VP/VS: from equilibrium geometry to crack,” Journal of Geophysical Research, vol. 107, no. B2, 2002. View at: Publisher Site | Google Scholar
  44. P. E. Van Keken, B. R. Hacker, E. M. Syracuse, and G. A. Abers, “Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide,” Journal of Geophysical Research - Solid Earth, vol. 116, no. B1, 2011. View at: Publisher Site | Google Scholar
  45. Y. Yano, A. Tanaka, M. Takahashi, Y. Okubo, M. Sasada, and K. Umeda, Japan Geothermal Gradient Map 1: 3000000, Geological Survey of Japan, 1999.
  46. R. Scandone and V. Acocella, “Control of the aspect ratio of the chamber roof on caldera formation during silicic eruptions,” Geophysical Research Letters, vol. 34, no. 22, 2007. View at: Publisher Site | Google Scholar
  47. O. Roche, T. H. Druitt, and O. Merle, “Experimental study of caldera formation,” Journal of Geophysical Research, vol. 105, no. B1, pp. 395–416, 2000. View at: Publisher Site | Google Scholar
  48. S. Kusumoto and K. Takemura, “Caldera geometry determined by the depth of the magma chamber,” Earth, Planets and Space, vol. 57, no. 11, pp. e17–e20, 2005. View at: Publisher Site | Google Scholar
  49. J. W. Cole, D. M. Milner, and K. D. Spinks, “Calderas and caldera structures: a review,” Earth-Science Reviews, vol. 69, no. 1-2, pp. 1–26, 2005. View at: Publisher Site | Google Scholar
  50. V. Acocella, “Understanding caldera structure and development: an overview of analogue models compared to natural calderas,” Earth-Science Reviews, vol. 85, no. 3-4, pp. 125–160, 2007. View at: Publisher Site | Google Scholar
  51. A. Geyer, A. Folch, and J. Martí, “Relationship between caldera collapse and magma chamber withdrawal: an experimental approach,” Journal of Volcanology and Geothermal Research, vol. 157, no. 4, pp. 375–386, 2006. View at: Publisher Site | Google Scholar
  52. Y. Tamura, Y. Tatsumi, D. Zhao, Y. Kido, and H. Shukuno, “Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones,” Earth and Planetary Science Letters, vol. 197, no. 1-2, pp. 105–116, 2002. View at: Publisher Site | Google Scholar
  53. A. Franco and F. Donatini, “Methods for the estimation of the energy stored in geothermal reservoirs,” Journal of Physics Conference Series, vol. 796, article 012025, 2017. View at: Publisher Site | Google Scholar
  54. Y. Miyazaki, H. Tsu, Urai M., S. Takakura, Y. Okubo, and K. Ogawa, “Assessment of geothermal resources of Japan- 1990,” in National Geothermal Resource Evaluation Study, pp. 17–43, Geological Survey of Japan, 1991. View at: Google Scholar

Copyright © 2019 Fajar F. Amanda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

659 Views | 313 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.