Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2010, Article ID 453563, 13 pages
http://dx.doi.org/10.1155/2010/453563
Review Article

Contribution of Gut Bacteria to Liver Pathobiology

1Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
2Department of Surgery, University of Heidelberg, 69120, Heidelberg, Germany
3Department of Nutrition and Dietetics, College of Human Ecology, East Carolina University, 110 Rivers Building, Greenville, NC 27858-4353, USA

Received 16 April 2010; Accepted 17 June 2010

Academic Editor: Ekihiro Seki

Copyright © 2010 Gakuhei Son et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Guarner and J.-R. Malagelada, “Gut flora in health and disease,” Lancet, vol. 361, no. 9356, pp. 512–519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. D. O'Keefe, “Nutrition and colonic health: the critical role of the microbiota,” Current Opinion in Gastroenterology, vol. 24, no. 1, pp. 51–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Musso, R. Gambino, and M. Cassader, “Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders,” Current Opinion in Lipidology, vol. 21, no. 1, pp. 76–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. F. Rawls, B. S. Samuel, and J. I. Gordon, “Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4596–4601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. N. A. Hering and J.-D. Schulzke, “Therapeutic options to modulate barrier defects in inflammatory bowel disease,” Digestive Diseases, vol. 27, no. 4, pp. 450–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Turner, “Intestinal mucosal barrier function in health and disease,” Nature Reviews Immunology, vol. 9, no. 11, pp. 799–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Murai, O. Turovskaya, G. Kim et al., “Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis,” Nature Immunology, vol. 10, no. 11, pp. 1178–1184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. S. Garrett, J. I. Gordon, and L. H. Glimcher, “Homeostasis and inflammation in the intestine,” Cell, vol. 140, no. 6, pp. 859–870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. W. E. C. Moore and L. H. Moore, “Intestinal floras of populations that have a high risk of colon cancer,” Applied and Environmental Microbiology, vol. 61, no. 9, pp. 3202–3207, 1995. View at Google Scholar · View at Scopus
  10. S. L. Gorbach and S. Tabaqchali, “Bacteria, bile, and the small bowel,” Gut, vol. 10, no. 12, pp. 963–972, 1969. View at Google Scholar · View at Scopus
  11. G. L. Simon and S. L. Gorbach, “The human intestinal microflora,” Digestive Diseases and Sciences, vol. 31, supplement 9, pp. 147S–162S, 1986. View at Google Scholar · View at Scopus
  12. D. A. Hill, C. Hoffmann, M. C. Abt et al., “Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis,” Mucosal Immunology, vol. 3, no. 2, pp. 148–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. S. Meyers, E. D. Ehrenpreis, and R. M. Craig, “Small intestinal bacterial overgrowth syndrome,” Current Treatment Options in Gastroenterology, vol. 4, no. 1, pp. 7–14, 2001. View at Google Scholar
  14. I. I. Ivanov, K. Atarashi, N. Manel et al., “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Wen, R. E. Ley, P. YU. Volchkov et al., “Innate immunity and intestinal microbiota in the development of Type 1 diabetes,” Nature, vol. 455, no. 7216, pp. 1109–1113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Blaut, “Relationship of prebiotics and food to intestinal microflora,” European Journal of Nutrition, vol. 41, supplement 1, pp. 11–16, 2002. View at Google Scholar · View at Scopus
  18. K. Itoh, W. K. Lee, and H. Kawamura, “Intestinal bacteria antagonistic to Clostridium difficile in mice,” Laboratory Animals, vol. 21, no. 1, pp. 20–25, 1987. View at Google Scholar · View at Scopus
  19. C. L. Rohde, V. Bartolini, and N. Jones, “The use of probiotics in the prevention and treatment of antibiotic-associated diarrhea with special interest in Clostridium difficile—associated diarrhea,” Nutrition in Clinical Practice, vol. 24, no. 1, pp. 33–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Taguchi, M. Takahashi, H. Yamaguchi et al., “Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli O157:H7, strain 6,” Journal of Medical Microbiology, vol. 51, no. 4, pp. 336–343, 2002. View at Google Scholar · View at Scopus
  21. J. I. Gordon, L. V. Hooper, M. Shane McNevin, M. Wong, and L. Bry, “Epithelial cell growth and differentiation III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT,” American Journal of Physiology, vol. 273, no. 3, pp. G565–G570, 1997. View at Google Scholar · View at Scopus
  22. Y. Umesaki, Y. Okada, S. Matsumoto, A. Imaoka, and H. Setoyama, “Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse,” Microbiology and Immunology, vol. 39, no. 8, pp. 555–562, 1995. View at Google Scholar · View at Scopus
  23. L. Luciano, R. Hass, R. Busche, W. V. Engelhardt, and E. Reale, “Withdrawal of butyrate from the colonic mucosa triggers 'mass apoptosis' primarily in the G0/G1 phase of the cell cycle,” Cell and Tissue Research, vol. 286, no. 1, pp. 81–92, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Ham and J. D. Kaunitz, “Gastroduodenal defense,” Current Opinion in Gastroenterology, vol. 23, no. 6, pp. 607–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Van der Sluis, B. A. E. De Koning, A. C. J. M. De Bruijn et al., “Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection,” Gastroenterology, vol. 131, no. 1, pp. 117–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Kyo, T. Muto, H. Nagawa, G. M. Lathrop, and Y. Nakamura, “Associations of distinct variants of the intestinal mucin gene MUC3A with ulcerative colitis and Crohn's disease,” Journal of Human Genetics, vol. 46, no. 1, pp. 5–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Al-Sadi, M. Boivin, and T. Ma, “Mechanism of cytokine modulation of epithelial tight junction barrier,” Frontiers in Bioscience, vol. 14, pp. 2765–2778, 2009. View at Google Scholar · View at Scopus
  28. M. Foti and P. Ricciardi-Castagnoli, “Antigen sampling by mucosal dendritic cells,” Trends in Molecular Medicine, vol. 11, no. 9, pp. 394–396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Telemo, M. Korotkova, and L. Å. Hanson, “Antigen presentation and processing in the intestinal mucosa and lymphocyte homing,” Annals of Allergy, Asthma and Immunology, vol. 90, no. 6, supplement 3, pp. 28–33, 2003. View at Google Scholar · View at Scopus
  30. M. E. Himmel, G. Hardenberg, C. A. Piccirillo, T. S. Steiner, and M. K. Levings, “The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease,” Immunology, vol. 125, no. 2, pp. 145–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. J. Hansen, L. Holt, and R. B. Sartor, “Gene expression patterns in experimental colitis in IL-10-deficient mice,” Inflammatory Bowel Diseases, vol. 15, no. 6, pp. 890–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. V. Ostanin, J. Bao, I. Koboziev et al., “T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade,” American Journal of Physiology, vol. 296, no. 2, pp. G135–G146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. W. Yrios and E. Balish, “Pathogenesis of Campylobacter spp. in athymic and euthymic germfree mice,” Infection and Immunity, vol. 53, no. 2, pp. 384–392, 1986. View at Google Scholar · View at Scopus
  34. H. M. Martin, B. J. Campbell, C. A. Hart et al., “Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer,” Gastroenterology, vol. 127, no. 1, pp. 80–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Baffy, “Kupffer cells in non-alcoholic fatty liver disease: the emerging view,” Journal of Hepatology, vol. 51, no. 1, pp. 212–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Van Egmond, E. Van Garderen, A. B. Van Spriel et al., “FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity,” Nature Medicine, vol. 6, no. 6, pp. 680–685, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. E. S. Fox, P. Thomas, and S. A. Broitman, “Clearance of gut-derived endotoxins by the liver. Release and modification of 3H,14C-lipopolysaccharide by isolated rat Kupffer cells,” Gastroenterology, vol. 96, no. 2, pp. 456–461, 1989. View at Google Scholar · View at Scopus
  38. Y. Okumura, H. Ishibashi, and M. Shirahama, “Kupffer cells modulate natural killer cell activity in vitro by producing prostaglandins,” Cellular Immunology, vol. 107, no. 1, pp. 89–98, 1987. View at Google Scholar · View at Scopus
  39. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Kanto and N. Hayashi, “Innate immunity in hepatitis C virus infection: interplay among dendritic cells, natural killer cells and natural killer T cells,” Hepatology Research, vol. 37, supplement 3, pp. S319–S326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Gumperz, “CD1d-restricted "NKT" cells and myeloid IL-12 production: an immunological crossroads leading to promotion or suppression of effective anti-tumor immune responses?” Journal of Leukocyte Biology, vol. 76, no. 2, pp. 307–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Orange and Z. K. Ballas, “Natural killer cells in human health and disease,” Clinical Immunology, vol. 118, no. 1, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Wisse, D. Luo, D. Vermijlen, C. Kanellopoulou, R. De Zanger, and F. Braet, “On the function of pit cells, the liver-specific natural killer cells,” Seminars in Liver Disease, vol. 17, no. 4, pp. 265–286, 1997. View at Google Scholar · View at Scopus
  44. F. Granucci, I. Zanoni, N. Pavelka et al., “A contribution of mouse dendritic cell-derived IL-2 for NK cell activation,” Journal of Experimental Medicine, vol. 200, no. 3, pp. 287–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. R. H. Wiltrout, R. B. Herberman, and S. R. Zhang, “Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver,” Journal of Immunology, vol. 134, no. 6, pp. 4267–4275, 1985. View at Google Scholar · View at Scopus
  46. S. Radaeva, R. Sun, B. Jaruga, V. T. Nguyen, Z. Tian, and B. Gao, “Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners,” Gastroenterology, vol. 130, no. 2, pp. 435–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Gao, S. Radaeva, and O. Park, “Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 513–528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. Z. Li, H. Lin, S. Yang, and A. M. Diehl, “Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system,” Gastroenterology, vol. 123, no. 4, pp. 1304–1310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Kremer, E. Thomas, R. J. Milton et al., “Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis,” Hepatology, vol. 51, no. 1, pp. 130–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Minagawa, Q. Deng, Z.-X. Liu, H. Tsukamoto, and G. Dennert, “Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-α during alcohol consumption,” Gastroenterology, vol. 126, no. 5, pp. 1387–1399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Jiang, R. Sun, R. Zhou, H. Wei, and Z. Tian, “TLR-9 activation aggravates concanavalin A-induced hepatitis via promoting accumulation and activation of liver CD4+ NKT cells,” Journal of Immunology, vol. 182, no. 6, pp. 3768–3774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. I. N. Crispe, “The liver as a lymphoid organ,” Annual Review of Immunology, vol. 27, pp. 147–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. P.-M. Roger, S. Chaillou, J.-P. Breittmayer et al., “Intrahepatic CD4+ T-cell apoptosis is related to METAVIR score in patients with chronic hepatitis C virus,” Scandinavian Journal of Immunology, vol. 62, no. 2, pp. 168–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. R. M. Zwacka, Y. Zhang, J. Halldorson, H. Schlossberg, L. Dudus, and J. F. Engelhardt, “CD4+ T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver,” Journal of Clinical Investigation, vol. 100, no. 2, pp. 279–289, 1997. View at Google Scholar · View at Scopus
  55. R. Safadi, M. Ohta, C. E. Alvarez et al., “Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes,” Gastroenterology, vol. 127, no. 3, pp. 870–882, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Takaku, Y. Nakagawa, M. Shimizu et al., “Induction of hepatic injury by hepatitis C virus-specific CD8+ murine cytotoxic T lymphocytes in transgenic mice expressing the viral structural genes,” Biochemical and Biophysical Research Communications, vol. 301, no. 2, pp. 330–337, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. S. N. Lichtman, J. Keku, J. H. Schwab, and R. B. Sartor, “Hepatic injury associated with small bowel bacterial overgrowth in rats is prevented by metronidazole and tetracycline,” Gastroenterology, vol. 100, no. 2, pp. 513–519, 1991. View at Google Scholar · View at Scopus
  58. N. H. Shomer, J. G. Fox, A. E. Juedes, and N. H. Ruddle, “Helicobacter-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue,” Infection and Immunity, vol. 71, no. 6, pp. 3572–3577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. S. B. Moura, E. N. Mendes, D. M. M. Queiroz et al., “Microbiological and histological study of the gastrointestinal tract of germ-free mice infected with Helicobacter trogontum,” Research in Microbiology, vol. 150, no. 3, pp. 205–212, 1999. View at Google Scholar · View at Scopus
  60. J. R. Scott and A. E. Fox-Robichaud, “Hepatic leukocyte recruitment in a model of acute colitis,” American Journal of Physiology, vol. 283, no. 3, pp. G561–G566, 2002. View at Google Scholar · View at Scopus
  61. U. Navaneethan and B. Shen, “Hepatopancreatobiliary manifestations and complications associated with inflammatory bowel disease,” Inflammatory Bowel Disease. In press.
  62. B. John and I. N. Crispe, “TLR-4 regulates CD8+ T cell trapping in the liver,” Journal of Immunology, vol. 175, no. 3, pp. 1643–1650, 2005. View at Google Scholar · View at Scopus
  63. Y. Numata, S. Tazuma, Y. Ueno, T. Nishioka, H. Hyogo, and K. Chayama, “Therapeutic effect of repeated natural killer T cell stimulation in mouse cholangitis complicated by colitis,” Digestive Diseases and Sciences, vol. 50, no. 10, pp. 1844–1851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Bambha, W. R. Kim, J. Talwalkar et al., “Incidence, clinical spectrum, and outcomes of primary sclerosing cholangitis in a united states community,” Gastroenterology, vol. 125, no. 5, pp. 1364–1369, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. I. N. Hines and M. D. Wheeler, “Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis,” American Journal of Physiology, vol. 287, no. 2, pp. G310–G314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Bode, V. Kugler, and J. C. Bode, “Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess,” Journal of Hepatology, vol. 4, no. 1, pp. 8–14, 1987. View at Google Scholar · View at Scopus
  67. T. Uesugi, M. Froh, G. E. Arteel, B. U. Bradford, and R. G. Thurman, “Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice,” Hepatology, vol. 34, no. 1, pp. 101–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Enomoto, K. Ikejima, S. Yamashina et al., “Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin,” Alcoholism: Clinical and Experimental Research, vol. 25, no. 6, supplement, pp. 51S–54S, 2001. View at Google Scholar · View at Scopus
  69. N. Enomoto, K. Ikejima, T. Kitamura et al., “Alcohol enhances lipopolysaccharide-induced increases in nitric oxide production by Kupffer cells via mechanisms dependent on endotoxin,” Alcoholism: Clinical and Experimental Research, vol. 24, no. 4, supplement, pp. 55S–58S, 2000. View at Google Scholar · View at Scopus
  70. M. D. Wheeler, H. Kono, M. Yin et al., “The role of kupffer cell oxidant production in early ethanol-induced liver disease,” Free Radical Biology and Medicine, vol. 31, no. 12, pp. 1544–1549, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. V. Purohit, J. C. Bode, C. Bode et al., “Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium,” Alcohol, vol. 42, no. 5, pp. 349–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Rao, “Endotoxemia and gut barrier dysfunction in alcoholic liver disease,” Hepatology, vol. 50, no. 2, pp. 638–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Fukui, H. Kitano, Y. Okamoto et al., “Interaction of Kupffer cells to splenic macrophages and hepatocytes in endotoxin clearance: effect of alcohol,” Journal of Gastroenterology and Hepatology, vol. 10, no. 1, pp. S31–S34, 1995. View at Google Scholar · View at Scopus
  74. T. Y. Ma, D. Nguyen, V. Bui, H. Nguyen, and N. Hoa, “Ethanol modulation of intestinal epithelial tight junction barrier,” American Journal of Physiology, vol. 276, no. 4, pp. G965–G974, 1999. View at Google Scholar · View at Scopus
  75. M. Salaspuro, “Bacteriocolonic pathway for ethanol oxidation: characteristics and implications,” Annals of Medicine, vol. 28, no. 3, pp. 195–200, 1996. View at Google Scholar · View at Scopus
  76. S. W. P. Koppe, A. Sahai, P. Malladi, P. F. Whitington, and R. M. Green, “Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet,” Journal of Hepatology, vol. 41, no. 4, pp. 592–598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. S. K. Satapathy, P. Sakhuja, V. Malhotra, B. C. Sharma, and S. K. Sarin, “Beneficial effects of pentoxifylline on hepatic steatosis, fibrosis and necroinflammation in patients with non-alcoholic steatohepatitis,” Journal of Gastroenterology and Hepatology, vol. 22, no. 5, pp. 634–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. A. M. Diehl, “Lessons from animal models of NASH,” Hepatology Research, vol. 33, no. 2, pp. 138–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Miele, V. Valenza, G. La Torre et al., “Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease,” Hepatology, vol. 49, no. 6, pp. 1877–1887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. W.-C. Wu, W. Zhao, and S. Li, “Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats,” World Journal of Gastroenterology, vol. 14, no. 2, pp. 313–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Szabo, A. Velayudham, L. Romics Jr., and P. Mandrekar, “Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of toll-like receptors 2 and 4,” Alcoholism: Clinical and Experimental Research, vol. 29, no. 11, supplement, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Spruss, G. Kanuri, S. Wagnerberger, S. Haub, S. C. Bischoff, and I. Bergheim, “Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice,” Hepatology, vol. 50, no. 4, pp. 1094–1104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Miura, Y. Kodama, S. Inokuchi, B. Schnabl, T. Aoyama, and H. Ohnishi, “Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice,” Gastroenterology. In press.
  84. R. S. Wright, J. W. Anderson, and S. R. Bridges, “Propionate inhibits hepatocyte lipid synthesis,” Proceedings of the Society for Experimental Biology and Medicine, vol. 195, no. 1, pp. 26–29, 1990. View at Google Scholar · View at Scopus
  85. P. D. Cani, R. Bibiloni, C. Knauf et al., “Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice,” Diabetes, vol. 57, no. 6, pp. 1470–1481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. P. D. Cani, N. M. Delzenne, J. Amar, and R. Burcelin, “Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding,” Pathologie Biologie, vol. 56, no. 5, pp. 305–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. P. D. Cani, A. M. Neyrinck, F. Fava et al., “Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia,” Diabetologia, vol. 50, no. 11, pp. 2374–2383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. I. N. Hines, J. M. Hoffman, H. Scheerens et al., “Regulation of postischemic liver injury following different durations of ischemia,” American Journal of Physiology, vol. 284, no. 3, pp. G536–G545, 2003. View at Google Scholar · View at Scopus
  89. A. Farhood, G. M. McGuire, A. M. Manning, M. Miyasaka, C. W. Smith, and H. Jaeschke, “Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver,” Journal of Leukocyte Biology, vol. 57, no. 3, pp. 368–374, 1995. View at Google Scholar · View at Scopus
  90. X.-D. Shen, B. Ke, Y. Zhai et al., “Toll-like receptor and heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury,” American Journal of Transplantation, vol. 5, no. 8, pp. 1793–1800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Tsung, R. A. Hoffman, K. Izuishi et al., “Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells,” Journal of Immunology, vol. 175, no. 11, pp. 7661–7668, 2005. View at Google Scholar · View at Scopus
  92. L. Devey, D. Ferenbach, E. Mohr et al., “Tissue-resident macrophages protect the liver from ischemia reperfusion injury via a heme oxygenase-1-dependent mechanism,” Molecular Therapy, vol. 17, no. 1, pp. 65–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. S. P. Pillay, C. Wynter, S. Lynch, D. Wall, G. Balderson, and R. Strong, “Endotoxin levels in donors and recipients during orthotopic liver transplantation,” Australian and New Zealand Journal of Surgery, vol. 67, no. 4, pp. 187–191, 1997. View at Google Scholar · View at Scopus
  94. S. Emre, A. Sebastian, L. Chodoff et al., “Selective decontamination of the digestive tract helps prevent bacterial infections in the early postoperative period after liver transplant,” Mount Sinai Journal of Medicine, vol. 66, no. 5-6, pp. 310–313, 1999. View at Google Scholar · View at Scopus
  95. M. Arai, S. Mochida, A. Ohno, S. Arai, and K. Fujiwara, “Selective bowel decontamination of recipients for prevention against liver injury following orthotopic liver transplantation: evaluation with rat models,” Hepatology, vol. 27, no. 1, pp. 123–127, 1998. View at Publisher · View at Google Scholar · View at Scopus
  96. J.-S. Lee and S. S. Thorgeirsson, “Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets,” Gastroenterology, vol. 127, no. 5, supplement, pp. S51–S55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. J. D. Groopman, T. W. Kensler, and C. P. Wild, “Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries,” Annual Review of Public Health, vol. 29, pp. 187–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Romeo and M. Colombo, “The natural history of hepatocellular carcinoma,” Toxicology, vol. 181-182, pp. 39–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. J. B. Lopez, “Recent developments in the first detection of hepatocellular carcinoma,” The Clinical Biochemist. Reviews, vol. 26, no. 3, pp. 65–79, 2005. View at Google Scholar · View at Scopus
  100. J. G. Fox, Y. Feng, E. J. Theve et al., “Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens,” Gut, vol. 59, no. 1, pp. 88–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. W. Abu Al-Soud, U. Stenram, A. Ljungh, K.-G. Tranberg, H.-O. Nilsson, and T. Wadström, “DNA of Helicobacter spp. and common gut bacteria in primary liver carcinoma,” Digestive and Liver Disease, vol. 40, no. 2, pp. 126–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. S.-Y. Xuan, N. Li, X. Qiang, R.-R. Zhou, Y.-X. Shi, and W.-J. Jiang, “Helicobacter infection in hepatocellular carcinoma tissue,” World Journal of Gastroenterology, vol. 12, no. 15, pp. 2335–2340, 2006. View at Google Scholar · View at Scopus
  103. R. Bataller and D. A. Brenner, “Liver fibrosis,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 209–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. E. Seki, S. De Minicis, C. H. Österreicher et al., “TLR4 enhances TGF-β signaling and hepatic fibrosis,” Nature Medicine, vol. 13, no. 11, pp. 1324–1332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. Z. Shi, A. E. Wakil, and D. C. Rockey, “Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 20, pp. 10663–10668, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Isayama, I. N. Hines, M. Kremer et al., “LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice,” American Journal of Physiology, vol. 290, no. 6, pp. G1318–G1328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. Y.-H. Paik, K. S. Lee, H. J. Lee et al., “Hepatic stellate cells primed with cytokines upregulate inflammation in response to peptidoglycan or lipoteichoic acid,” Laboratory Investigation, vol. 86, no. 7, pp. 676–686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. Y.-H. Paik, R. F. Schwabe, R. Bataller, M. P. Russo, C. Jobin, and D. A. Brenner, “Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells,” Hepatology, vol. 37, no. 5, pp. 1043–1055, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. T. M. Bauer, B. Steinbrückner, F. E. Brinkmann et al., “Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis,” American Journal of Gastroenterology, vol. 96, no. 10, pp. 2962–2967, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. S. A. Gunnarsdottir, R. Sadik, S. Shev et al., “Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension,” American Journal of Gastroenterology, vol. 98, no. 6, pp. 1362–1370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. T. A. Miettinen, “Lipid absorption, bile acids, and cholesterol metabolism in patients with chronic liver disease,” Gut, vol. 13, no. 9, pp. 682–689, 1972. View at Google Scholar · View at Scopus
  112. J. Y. Sung, E. A. Shaffer, and J. W. Costerton, “Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids,” Digestive Diseases and Sciences, vol. 38, no. 11, pp. 2104–2112, 1993. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Inagaki, A. Moschetta, Y.-K. Lee et al., “Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 10, pp. 3920–3925, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. I. Castilla-Cortázar, M. Pascual, E. Urdaneta et al., “Jejunal microvilli atrophy and reduced nutrient transport in rats with advanced liver cirrhosis: improvement by insulin-like growth factor I,” BMC Gastroenterology, vol. 4, article no. 12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. M. K. Washington, “Autoimmune liver disease: overlap and outliers,” Modern Pathology, vol. 20, supplement 1, pp. S15–S30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Kremer, A. W. Perry, R. J. Milton, R. A. Rippe, M. D. Wheeler, and I. N. Hines, “Pivotal role of Smad3 in a mouse model of T cell-mediated hepatitis,” Hepatology, vol. 47, no. 1, pp. 113–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Jaruga, F. Hong, R. Sun, S. Radaeva, and B. Gao, “Crucial role of IL-4/STAT6 in T cell-mediated hepatitis: up-regulating eotaxins and IL-5 and recruiting leukocytes,” Journal of Immunology, vol. 171, no. 6, pp. 3233–3244, 2003. View at Google Scholar · View at Scopus
  118. T. Kondo, T. Suda, H. Fukuyama, M. Adachi, and S. Nagata, “Essential roles in the Fas ligand in the development of hepatitis,” Nature Medicine, vol. 3, no. 4, pp. 409–413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  119. K.-I. Seino, N. Kayagaki, K. Takeda, K. Fukao, K. Okumura, and H. Yagita, “Contribution of Fas ligand to T cell-mediated hepatic injury in mice,” Gastroenterology, vol. 113, no. 4, pp. 1315–1322, 1997. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Takeda, Y. Hayakawa, L. Van Kaer, H. Matsuda, H. Yagita, and K. Okumura, “Critical contribution of liver natural killer T cells to a murine model of hepatitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5498–5503, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Mizuhara, M. Uno, N. Seki et al., “Critical involvement of interferon gamma in the pathogenesis of T-cell activation-associated hepatitis and regulatory mechanisms of interleukin-6 for the manifestations of hepatitis,” Hepatology, vol. 23, no. 6, pp. 1608–1615, 1996. View at Publisher · View at Google Scholar · View at Scopus
  122. U. Hopf, R. Stemerowicz, A. Rodloff et al., “Relation between Escherichia coli R(rough)-forms in gut, lipid A in liver, and primary biliary cirrhosis,” Lancet, vol. 2, no. 8677, pp. 1419–1422, 1989. View at Google Scholar · View at Scopus
  123. M. G. Silveira and K. D. Lindor, “Primary sclerosing cholangitis,” Canadian Journal of Gastroenterology, vol. 22, no. 8, pp. 689–698, 2008. View at Google Scholar · View at Scopus
  124. R. Wojczys, “Liver involvement and its course in experimental colitis in rats,” Hepato-Gastroenterology, vol. 44, no. 16, pp. 1193–1195, 1997. View at Google Scholar · View at Scopus
  125. J. Fung, C.-L. Lai, and M.-F. Yuen, “Hepatitis B and C virus-related carcinogenesis,” Clinical Microbiology and Infection, vol. 15, no. 11, pp. 964–970, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Perrault and E.-I. Pécheur, “The hepatitis C virus and its hepatic environment: a toxic but finely tuned partnership,” Biochemical Journal, vol. 423, no. 3, pp. 303–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Machida, H. Tsukamoto, H. Mkrtchyan et al., “Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1548–1553, 2009. View at Publisher · View at Google Scholar · View at Scopus