Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2010, Article ID 518674, 8 pages
http://dx.doi.org/10.1155/2010/518674
Review Article

TLRs, Alcohol, HCV, and Tumorigenesis

Department of Molecular Microbiology and Immunology, 503B-HMR, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA

Received 16 April 2010; Accepted 19 December 2010

Academic Editor: Timothy R. Billiar

Copyright © 2010 Keigo Machida. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Okuda, “Hepatocellular carcinoma,” Journal of Hepatology, vol. 32, no. 1, pp. 225–237, 2000. View at Google Scholar · View at Scopus
  2. J. S. Crippin, T. McCashland, N. Terrault, P. Sheiner, and M. R. Charlton, “A pilot study of the tolerability and efficacy of antiviral therapy in hepatitis C virus-infected patients awaiting liver transplantation,” Liver Transplantation, vol. 8, no. 4, pp. 350–355, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. Okuda, K. Li, M. R. Beard et al., “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology, vol. 122, no. 2, pp. 366–375, 2002. View at Google Scholar · View at Scopus
  4. F. Yao and N. Terrault, “Hepatitis C and hepatocellular carcinoma,” Current Treatment Options in Oncology, vol. 2, no. 6, pp. 473–483, 2001. View at Google Scholar · View at Scopus
  5. T. Heintges and J. R. Wands, “Hepatitis C virus: epidemiology and transmission,” Hepatology, vol. 26, no. 3, pp. 521–526, 1997. View at Google Scholar · View at Scopus
  6. C. Brechot, B. Nalpas, and M. A. Feitelson, “Interactions between alcohol and hepatitis viruses in the liver,” Clinics in Laboratory Medicine, vol. 16, no. 2, pp. 273–287, 1996. View at Google Scholar · View at Scopus
  7. M. G. Peters and N. A. Terrault, “Alcohol use and hepatitis C,” Hepatology, vol. 36, no. 5, pp. S220–S225, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. F. Donato, U. Gelatti, R. M. Limina, and G. Fattovich, “Southern Europe as an example of interaction between various environmental factors: a systematic review of the epidemiologic evidence,” Oncogene, vol. 25, no. 27, pp. 3756–3770, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. M. Hassan, L. Y. Hwang, C. J. Hatten et al., “Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus,” Hepatology, vol. 36, no. 5, pp. 1206–1213, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. M. Yuan, S. Govindarajan, K. Arakawa, and M. C. Yu, “Synergism of alcohol, diabetes, and viral hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the U.S,” Cancer, vol. 101, no. 5, pp. 1009–1017, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. S. Lai, M. S. Hsieh, Y. H. Chiu, and T. H. H. Chen, “Type 2 diabetes and hepatocellular carcinoma: a cohort study in high prevalence area of hepatitis virus infection,” Hepatology, vol. 43, no. 6, pp. 1295–1302, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. Moriya, K. Nakagawa, T. Santa et al., “Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis,” Cancer Research, vol. 61, no. 11, pp. 4365–4370, 2001. View at Google Scholar · View at Scopus
  13. M. Korenaga, T. Wang, Y. Li et al., “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” Journal of Biological Chemistry, vol. 280, no. 45, pp. 37481–37488, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. G. Perlemuter, A. Sabile, P. Letteron et al., “Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis,” FASEB Journal, vol. 16, no. 2, pp. 185–194, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. T. Kawaguchi, T. Yoshida, M. Harada et al., “Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3,” American Journal of Pathology, vol. 165, no. 5, pp. 1499–1508, 2004. View at Google Scholar · View at Scopus
  16. S. Banerjee, K. Saito, M. Ait-Goughoulte, K. Meyer, R. B. Ray, and R. Ray, “Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream Akt/protein kinase B signaling pathway for insulin resistance,” Journal of Virology, vol. 82, no. 6, pp. 2606–2612, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. K. Koike, T. Tsutsumi, H. Miyoshi et al., “Molecular basis for the synergy between alcohol and hepatitis C virus in hepatocarcinogenesis,” Journal of Gastroenterology and Hepatology, vol. 23, supplement 1, pp. S87–S91, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. G. Szabo, A. Dolganiuc, and P. Mandrekar, “Pattern recognition receptors: a contemporary view on liver diseases,” Hepatology, vol. 44, no. 2, pp. 287–298, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. G. Testro and K. Visvanathan, “Toll-like receptors and their role in gastrointestinal disease,” Journal of Gastroenterology and Hepatology, vol. 24, no. 6, pp. 943–954, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. Machida, H. Tsukamoto, H. Mkrtchyan et al., “Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1548–1553, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. J. Gale Jr., M. J. Korth, N. M. Tang et al., “Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein,” Virology, vol. 230, no. 2, pp. 217–227, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. N. Kato, K. H. Lan, S. K. Ono-Nita, Y. Shiratori, and M. Omata, “Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator,” Journal of Virology, vol. 71, no. 11, pp. 8856–8859, 1997. View at Google Scholar · View at Scopus
  23. G. Barba, F. Harper, T. Harada et al., “Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 4, pp. 1200–1205, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Mandrekar, S. Bala, D. Catalano, K. Kodys, and G. Szabo, “The opposite effects of acute and chronic alcohol on lipopolysaccharide- induced inflammation are linked to IRAK-M in human monocytes,” Journal of Immunology, vol. 183, no. 2, pp. 1320–1327, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. K. Miura, Y. Kodama, S. Inokuchi et al., “Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice,” Gastroenterology, vol. 139, no. 1, pp. 323–334, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E. Seki, S. De Minicis, C. H. Österreicher et al., “TLR4 enhances TGF-β signaling and hepatic fibrosis,” Nature Medicine, vol. 13, no. 11, pp. 1324–1332, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Oshita, N. Hayashi, A. Kasahara et al., “Increased serum hepatitis C virus RNA levels among alcoholic patients with chronic hepatitis C,” Hepatology, vol. 20, no. 5, pp. 1115–1120, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. K. E. Sherman, J. O'Brien, A. G. Gutierrez et al., “Quantitative evaluation of hepatitis C virus RNA in patients with concurrent human immunodeficiency virus infections,” Journal of Clinical Microbiology, vol. 31, no. 10, pp. 2679–2682, 1993. View at Google Scholar · View at Scopus
  29. F. Paronetto, “Immunologic reactions in alcoholic liver disease,” Seminars in Liver Disease, vol. 13, no. 2, pp. 183–195, 1993. View at Google Scholar · View at Scopus
  30. C. J. McClain and D. A. Cohen, “Increased tumor necrosis factor production by monocytes in alcoholic hepatitis,” Hepatology, vol. 9, no. 3, pp. 349–351, 1989. View at Google Scholar · View at Scopus
  31. A. Khoruts, L. Stahnke, C. J. McClain, G. Logan, and J. I. Allen, “Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients,” Hepatology, vol. 13, no. 2, pp. 267–276, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. G. L. A. Bird, N. Sheron, A. K. J. Goka, G. J. Alexander, and R. S. Williams, “Increased plasma tumor necrosis factor in severe alcoholic hepatitis,” Annals of Internal Medicine, vol. 112, no. 12, pp. 917–920, 1990. View at Google Scholar · View at Scopus
  33. C. Ji, Q. Deng, and N. Kaplowitz, “Role of TNF-α in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury,” Hepatology, vol. 40, no. 2, pp. 442–451, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. G. M. Adamson and R. E. Billings, “Tumor necrosis factor induced oxidative stress in isolated mouse hepatocytes,” Archives of Biochemistry and Biophysics, vol. 294, no. 1, pp. 223–229, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. A. A. Beg and D. Baltimore, “An essential role for NF-κB in preventing TNF-α-induced cell death,” Science, vol. 274, no. 5288, pp. 782–784, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. D. J. Van Antwerp, S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma, “Suppression of TNF-α-induced apoptosis by NF-κB,” Science, vol. 274, no. 5288, pp. 787–789, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Y. Wang, M. W. Mayo, and A. S. Baldwin, “TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB,” Science, vol. 274, no. 5288, pp. 784–787, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. G. H. W. Wong, J. H. Elwell, L. W. Oberly, and D. V. Goeddel, “Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor,” Cell, vol. 58, no. 5, pp. 923–931, 1989. View at Google Scholar · View at Scopus
  39. J. C. Fernandez-Checa, C. Garcia-Ruiz, M. Ookhtens, and N. Kaplowitz, “Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress,” Journal of Clinical Investigation, vol. 87, no. 2, pp. 397–405, 1991. View at Google Scholar · View at Scopus
  40. M. Matsumoto, T. Y. Hsieh, N. Zhu et al., “Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-β receptor,” Journal of Virology, vol. 71, no. 2, pp. 1301–1309, 1997. View at Google Scholar · View at Scopus
  41. N. Zhu, A. Khoshnan, R. Schneider et al., “Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis,” Journal of Virology, vol. 72, no. 5, pp. 3691–3697, 1998. View at Google Scholar · View at Scopus
  42. A. Ruggieri, T. Harada, Y. Matsuura, and T. Miyamura, “Sensitization to Fas-mediated apoptosis by hepatitis C virus core protein,” Virology, vol. 229, no. 1, pp. 68–76, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. P. S. Ribeiro, H. Cortez-Pinto, S. Solá et al., “Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients,” American Journal of Gastroenterology, vol. 99, no. 9, pp. 1708–1717, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. Moriya, H. Fujie, Y. Shintani et al., “The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice,” Nature Medicine, vol. 4, no. 9, pp. 1065–1067, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. K. Machida, K. T. H. Cheng, N. Pavio, V. M. H. Sung, and M. M. C. Lai, “Hepatitis C virus E2-CD81 interaction induces hypermutation of the immunoglobulin gene in B cells,” Journal of Virology, vol. 79, no. 13, pp. 8079–8089, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. T. Tsutsumi, T. Suzuki, K. Moriya et al., “Alteration of intrahepatic cytokine expression and AP-1 activation in transgenic mice expressing hepatitis C virus core protein,” Virology, vol. 304, no. 2, pp. 415–424, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Machida, K. T. H. Cheng, V. M. H. Sung, A. M. Levine, S. Foung, and M. M. C. Lai, “Hepatitis C virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon and interleukin-6,” Journal of Virology, vol. 80, no. 2, pp. 866–874, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. J. Song, K. H. Kim, J. M. Yoon, and J. B. Kim, “Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes,” Biochemical and Biophysical Research Communications, vol. 346, no. 3, pp. 739–745, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. J. M. Schattenberg, Y. Wang, R. Singh, R. M. Rigoli, and M. J. Czaja, “Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling,” Journal of Biological Chemistry, vol. 280, no. 11, pp. 9887–9894, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. B. U. Bradford, H. Kono, F. Isayama et al., “Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver,” Hepatology, vol. 41, no. 2, pp. 336–344, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. Q. Cao, K. M. Mak, and C. S. Lieber, “Cytochrome P4502E1 primes macrophages to increase TNF-α production in response to lipopolysaccharide,” American Journal of Physiology, vol. 289, no. 1, pp. G95–G107, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. H. Liu, B. E. Jones, C. Bradham, and M. J. Czaja, “Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-α,” American Journal of Physiology, vol. 282, no. 2, pp. G257–G266, 2002. View at Google Scholar · View at Scopus
  53. Y. Lu and A. I. Cederbaum, “Enhancement by pyrazole of lipopolysaccharide-induced liver injury in mice: role of cytochrome P450 2E1 and 2A5,” Hepatology, vol. 44, no. 1, pp. 263–274, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. J. Y. Lee, J. Ye, Z. Gao et al., “Reciprocal modulation of toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37041–37051, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. A. A. Nanji, “Role of different dietary fatty acids in the pathogenesis of experimental alcoholic liver disease,” Alcohol, vol. 34, no. 1, pp. 21–25, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. F. Hilberg, A. Aguzzi, N. Howells, and E. F. Wagner, “c-Jun is essential for normal mouse development and hepatogenesis,” Nature, vol. 365, no. 6442, pp. 179–181, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. R. S. Johnson, B. Van Lingen, V. E. Papaioannou, and B. M. Spiegelman, “A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture,” Genes and Development, vol. 7, no. 7, pp. 1309–1317, 1993. View at Google Scholar · View at Scopus
  58. A. Behrens, M. Sibilia, J. P. David et al., “Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver,” EMBO Journal, vol. 21, no. 7, pp. 1782–1790, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. T. Sakurai, S. Maeda, L. Chang, and M. Karin, “Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10544–10551, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. R. Eferl, R. Ricci, L. Kenner et al., “Liver tumor development: c-Jun antagonizes the proapoptotic activity of p53,” Cell, vol. 112, no. 2, pp. 181–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. S. M. Yeligar, K. Machida, H. Tsukamoto, and V. K. Kalra, “Ethanol augments RANTES/CCL5 expression in rat liver sinusoidal endothelial cells and human endothelial cells via activation of NF-κB, HIF-1α, and AP-1,” Journal of Immunology, vol. 183, no. 9, pp. 5964–5976, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. N. Kato, H. Yoshida, S. Kioko Ono-Nita et al., “Activation of intracellular signaling by hepatitis B and C viruses: C- viral core is the most potent signal inducer,” Hepatology, vol. 32, no. 2, pp. 405–412, 2000. View at Google Scholar · View at Scopus
  63. S. Maeda and M. Karin, “Oncogene at last—c-Jun promotes liver cancer in mice,” Cancer Cell, vol. 3, no. 2, pp. 102–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Shrivastava, S. K. Manna, R. Ray, and B. B. Aggarwal, “Ectopic expression of hepatitis C virus core protein differentially regulates nuclear transcription factors,” Journal of Virology, vol. 72, no. 12, pp. 9722–9728, 1998. View at Google Scholar · View at Scopus
  65. T. A. Roskams, N. D. Theise, C. Balabaud et al., “Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers,” Hepatology, vol. 39, no. 6, pp. 1739–1745, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. T. Roskams, “Liver stem cells and their implication in hepatocellular and cholangiocarcinoma,” Oncogene, vol. 25, no. 27, pp. 3818–3822, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. Z. D. Burke, S. Thowfeequ, M. Peran, and D. Tosh, “Stem cells in the adult pancreas and liver,” Biochemical Journal, vol. 404, no. 2, pp. 169–178, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. H. M. Hatch, D. Zheng, M. L. Jorgensen, and B. E. Petersen, “SDF-1α/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats,” Cloning and Stem Cells, vol. 4, no. 4, pp. 339–351, 2002. View at Google Scholar · View at Scopus
  69. M. R. Alison, “Liver stem cells: implications for hepatocarcinogenesis,” Stem Cell Reviews, vol. 1, no. 3, pp. 253–260, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. L. Zender, M. S. Spector, W. Xue et al., “Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach,” Cell, vol. 125, no. 7, pp. 1253–1267, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. Y. Tang, K. Kitisin, W. Jogunoori et al., “Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2445–2450, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. C. E. H. Craig, A. Quaglia, C. Selden, M. Lowdell, H. Hodgson, and A. P. Dhillon, “The histopathology of regeneration in massive hepatic necrosis,” Seminars in Liver Disease, vol. 24, no. 1, pp. 49–64, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. Z. F. Yang, D. W. Ho, M. N. Ng et al., “Significance of CD90+ cancer stem cells in human liver cancer,” Cancer Cell, vol. 13, no. 2, pp. 153–166, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. S. Ma, K. W. Chan, L. Hu et al., “Identification and characterization of tumorigenic liver cancer stem/progenitor cells,” Gastroenterology, vol. 132, no. 7, pp. 2542–2556, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. M. E. Valk-Lingbeek, S. W. M. Bruggeman, and M. Van Lohuizen, “Stem cells and cancer: the polycomb connection,” Cell, vol. 118, no. 4, pp. 409–418, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. I. Chambers and A. Smith, “Self-renewal of teratocarcinoma and embryonic stem cells,” Oncogene, vol. 23, no. 43, pp. 7150–7160, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. P. A. Beachy, S. S. Karhadkar, and D. M. Berman, “Tissue repair and stem cell renewal in carcinogenesis,” Nature, vol. 432, no. 7015, pp. 324–331, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. C. B. Rountree, S. Senadheera, J. M. Mato, G. M. Crooks, and S. C. Lu, “Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice,” Hepatology, vol. 47, no. 4, pp. 1288–1297, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. S. Ma, T. K. Lee, B. J. Zheng, K. W. Chan, and X. Y. Guan, “CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway,” Oncogene, vol. 27, no. 12, pp. 1749–1758, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. E. Wurmbach, Y. B. Chen, G. Khitrov et al., “Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma,” Hepatology, vol. 45, no. 4, pp. 938–947, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. G. C. T. Yeoh, M. Ernst, S. Rose-John et al., “Opposing roles of gp130-mediated STAT-3 and ERK-1/2 signaling in liver progenitor cell migration and proliferation,” Hepatology, vol. 45, no. 2, pp. 486–494, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. J. S. Dando, M. Tavian, C. Catelain et al., “Notch/Delta4 interaction in human embryonic liver CD34CD38 cells: positive influence on BFU-E production and LTC-IC potential maintenance,” Stem Cells, vol. 23, no. 4, pp. 550–560, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. J. K. Sicklick, Y. X. Li, A. Jayaraman et al., “Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis,” Carcinogenesis, vol. 27, no. 4, pp. 748–757, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. J. K. Sicklick, Y. X. Li, A. Melhem et al., “Hedgehog signaling maintains resident hepatic progenitors throughout life,” American Journal of Physiology, vol. 290, no. 5, pp. G859–G870, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. K. Kitisin, N. Ganesan, Y. Tang et al., “Disruption of transforming growth factor-β signaling through β-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation,” Oncogene, vol. 26, no. 50, pp. 7103–7110, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. L. N. Nguyen, M. H. Furuya, L. A. Wolfraim et al., “Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation,” Hepatology, vol. 45, no. 1, pp. 31–41, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. J. W. Y. Ho, R. W. C. Pang, C. Lau et al., “Significance of circulating endothelial progenitor cells in hepatocellular carcinoma,” Hepatology, vol. 44, no. 4, pp. 836–843, 2006. View at Publisher · View at Google Scholar · View at PubMed
  88. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at PubMed
  89. S. V. Shmelkov, R. ST. Clair, D. Lyden, and S. Rafii, “AC133/CD133/Prominin-1,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 4, pp. 715–719, 2005. View at Publisher · View at Google Scholar · View at PubMed
  90. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at PubMed
  91. J. E. E. Tirnitz-Parker, J. N. Tonkin, B. Knight, J. K. Olynyk, and G. C. T. Yeoh, “Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 12, pp. 2226–2239, 2007. View at Publisher · View at Google Scholar · View at PubMed
  92. L. Libbrecht, R. De Vos, D. Cassiman, V. Desmet, R. Aerts, and T. Roskams, “Hepatic progenitor cells in hepatocellular adenomas,” American Journal of Surgical Pathology, vol. 25, no. 11, pp. 1388–1396, 2001. View at Publisher · View at Google Scholar
  93. T. Lapidot, C. Sirard, J. Vormoor et al., “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice,” Nature, vol. 367, no. 6464, pp. 645–648, 1994. View at Publisher · View at Google Scholar · View at PubMed
  94. T. Chiba, K. Kita, Y. W. Zheng et al., “Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties,” Hepatology, vol. 44, no. 1, pp. 240–251, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. G. R. Martin, “Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 12, pp. 7634–7638, 1981. View at Google Scholar
  96. Y. H. Loh, Q. Wu, J. L. Chew et al., “The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells,” Nature Genetics, vol. 38, no. 4, pp. 431–440, 2006. View at Publisher · View at Google Scholar · View at PubMed
  97. J. Wang, S. Rao, J. Chu et al., “A protein interaction network for pluripotency of embryonic stem cells,” Nature, vol. 444, no. 7117, pp. 364–368, 2006. View at Publisher · View at Google Scholar · View at PubMed
  98. S. Rao and S. H. Orkin, “Unraveling the transcriptional network controlling ES cell pluripotency,” Genome Biology, vol. 7, no. 8, article 230, 2006. View at Publisher · View at Google Scholar · View at PubMed
  99. G. Pan and J. A. Thomson, “Nanog and transcriptional networks in embryonic stem cell pluripotency,” Cell Research, vol. 17, no. 1, pp. 42–49, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. I. Chambers, D. Colby, M. Robertson et al., “Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells,” Cell, vol. 113, no. 5, pp. 643–655, 2003. View at Publisher · View at Google Scholar
  101. C. E. Hoei-Hansen, K. Almstrup, J. E. Nielsen et al., “Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours,” Histopathology, vol. 47, no. 1, pp. 48–56, 2005. View at Publisher · View at Google Scholar · View at PubMed
  102. A. H. Hart, L. Hartley, K. Parker et al., “The pluripotency homeobox gene NANOG is expressed in human germ cell tumors,” Cancer, vol. 104, no. 10, pp. 2092–2098, 2005. View at Publisher · View at Google Scholar · View at PubMed
  103. S. Santagata, K. L. Ligon, and J. L. Hornick, “Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors,” American Journal of Surgical Pathology, vol. 31, no. 6, pp. 836–845, 2007. View at Publisher · View at Google Scholar · View at PubMed
  104. U. I. Ezeh, P. J. Turek, R. A. Reijo Pera, and A. T. Clark, “Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma,” Cancer, vol. 104, no. 10, pp. 2255–2265, 2005. View at Publisher · View at Google Scholar · View at PubMed
  105. C. P. Gibbs, V. G. Kukekov, J. D. Reith et al., “Stem-like cells in bone sarcomas: implications for tumorigenesis,” Neoplasia, vol. 7, no. 11, pp. 967–976, 2005. View at Publisher · View at Google Scholar
  106. J. Zhang, X. Wang, B. Chen et al., “Expression of Nanog gene promotes NIH3T3 cell proliferation,” Biochemical and Biophysical Research Communications, vol. 338, no. 2, pp. 1098–1102, 2005. View at Publisher · View at Google Scholar · View at PubMed