Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2010, Article ID 618260, 7 pages
http://dx.doi.org/10.1155/2010/618260
Review Article

TLRs in Hepatic Cellular Crosstalk

1Malaria Program, Seattle BioMed, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
2Department of Immunology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA

Received 18 April 2010; Accepted 24 June 2010

Academic Editor: Ekihiro Seki

Copyright © 2010 Amelie E. Bigorgne and Ian Nicholas Crispe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Uhrig, R. Banafsche, and R. Banafsche, “Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 626–633, 2005. View at Publisher · View at Google Scholar · View at PubMed
  2. W. Jiang, R. Sun, H. Wei, and Z. Tian, “Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of Toll-like receptor 4 expression on macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 47, pp. 17077–17082, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. M. J. Scott, S. Liu, R. A. Shapiro, Y. Vodovotz, and T. R. Billiar, “Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism,” Hepatology, vol. 49, no. 5, pp. 1695–1708, 2009. View at Publisher · View at Google Scholar · View at PubMed
  4. B. John and I. N. Crispe, “TLR-4 regulates CD8+ T cell trapping in the liver,” Journal of Immunology, vol. 175, no. 3, pp. 1643–1650, 2005. View at Google Scholar
  5. Z. Tu, A. Bozorgzadeh, R. H. Pierce, J. Kurtis, I. N. Crispe, and M. S. Orloff, “TLR-dependent cross talk between human Kupffer cells and NK cells,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 233–244, 2008. View at Publisher · View at Google Scholar · View at PubMed
  6. C. J. Steib, A. C. Hartmann, C. V. Hesler, A. Benesic, M. Hennenberg, M. Bilzer, and A. L. Gerbes, “Intraperitoneal LPS amplifies portal hypertension in rat liver fibrosis,” Laboratory Investigation, vol. 90, no. 7, pp. 1024–1032, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. H. Miyaso, Y. Morimoto, and Y. Morimoto, “Obstructive jaundice increases sensitivity to lipopolysaccharide via TLR4 upregulation: possible involvement in gut-derived hepatocyte growth factor-protection of hepatocytes,” Journal of Gastroenterology and Hepatology, vol. 20, no. 12, pp. 1859–1866, 2005. View at Publisher · View at Google Scholar · View at PubMed
  8. K. P. Mollen, R. M. Levy, and R. M. Levy, “Systemic inflammation and end organ damage following trauma involves functional TLR4 signaling in both bone marrow-derived cells and parenchymal cells,” Journal of Leukocyte Biology, vol. 83, no. 1, pp. 80–88, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. C. A. Rivera, P. Adegboyega, N. van Rooijen, A. Tagalicud, M. Allman, and M. Wallace, “Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis,” Journal of Hepatology, vol. 47, no. 4, pp. 571–579, 2007. View at Publisher · View at Google Scholar · View at PubMed
  10. H. Hamdi, A. Bigorgne, and A. Bigorgne, “Glucocorticoid-induced leucine zipper: a key protein in the sensitization of monocytes to lipopolysaccharide in alcoholic hepatitis,” Hepatology, vol. 46, no. 6, pp. 1986–1992, 2007. View at Publisher · View at Google Scholar · View at PubMed
  11. I. Hritz, P. Mandrekar, and P. Mandrekar, “The critical role of Toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88,” Hepatology, vol. 48, no. 4, pp. 1224–1231, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. Q. Zhang, M. Raoof, and M. Raoof, “Circulating mitochondrial DAMPs cause inflammatory responses to injury,” Nature, vol. 464, no. 1, pp. 104–107, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. Z. M. Bamboat, V. P. Balachandran, L. M. Ocuin, H. Obaid, G. Plitas, and R. P. DeMatteo, “Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury,” Hepatology, vol. 51, no. 2, pp. 621–632, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. Y. Zhai, X.-D. Shen, and X.-D. Shen, “Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway,” Journal of Immunology, vol. 173, no. 12, pp. 7115–7119, 2004. View at Google Scholar
  15. K. Miura, Y. Kodama, and Y. Kodama, “Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice,” Gastroenterology, vol. 139, no. 1, pp. 323–334, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. A. B. Imaeda, A. Watanabe, and A. Watanabe, “Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome,” Journal of Clinical Investigation, vol. 119, no. 2, pp. 305–314, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. C.-J. Chen, H. Kono, D. Golenbock, G. Reed, S. Akira, and K. L. Rock, “Identification of a key pathway required for the sterile inflammatory response triggered by dying cells,” Nature Medicine, vol. 13, no. 7, pp. 851–856, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. A.-K. Yi, H. Yoon, J.-E. Park, B.-S. Kim, H. J. Kim, and A. Martinez-Hernandez, “CpG DNA-mediated induction of acute liver injury in D-galactosamine-sensitized mice: the mitochondrial apoptotic pathway-dependent death of hepatocytes,” Journal of Biological Chemistry, vol. 281, no. 21, pp. 15001–15012, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. J. Guo, J. Loke, and J. Loke, “Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses,” Hepatology, vol. 49, no. 3, pp. 960–968, 2009. View at Publisher · View at Google Scholar · View at PubMed
  20. A. Tsung, R. Sahai, and R. Sahai, “The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion,” Journal of Experimental Medicine, vol. 201, no. 7, pp. 1135–1143, 2005. View at Publisher · View at Google Scholar · View at PubMed
  21. J. S. Park, D. Svetkauskaite, Q. He, J.-Y. Kim, D. Strassheim, A. Ishizaka, and E. Abraham, “Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein,” Journal of Biological Chemistry, vol. 279, no. 9, pp. 7370–7377, 2004. View at Publisher · View at Google Scholar · View at PubMed
  22. J. Tian, A. M. Avalos, and A. M. Avalos, “Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE,” Nature Immunology, vol. 8, no. 5, pp. 487–496, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. T. R. Gardner, Q. Chen, Y. Jin, and M. N. Ajuebor, “Toll-like receptor 3 ligand dampens liver inflammation by stimulating Vα14 invariant natural killer T cells to negatively regulate γδT cells,” American Journal of Pathology, vol. 176, no. 4, pp. 1779–1789, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. L. D. DeLeve, X. Wang, and Y. Guo, “Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence,” Hepatology, vol. 48, no. 3, pp. 920–930, 2008. View at Publisher · View at Google Scholar · View at PubMed
  25. A. Canbay, P. Taimr, N. Torok, H. Higuchi, S. Friedman, and G. J. Gores, “Apoptotic body engulfment by a human stellate cell line is profibrogenic,” Laboratory Investigation, vol. 83, no. 5, pp. 655–663, 2003. View at Google Scholar
  26. A. Watanabe, A. Hashmi, D. A. Gomes, T. Town, A. Badou, R. A. Flavell, and W. Z. Mehal, “Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via Toll-like receptor 9,” Hepatology, vol. 46, no. 5, pp. 1509–1518, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. Y.-H. Paik, R. F. Schwabe, R. Bataller, M. P. Russo, C. Jobin, and D. A. Brenner, “Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells,” Hepatology, vol. 37, no. 5, pp. 1043–1055, 2003. View at Publisher · View at Google Scholar · View at PubMed
  28. E. Seki, S. De Minicis, C. H. Österreicher, J. Kluwe, Y. Osawa, D. A. Brenner, and R. F. Schwabe, “TLR4 enhances TGF-β signaling and hepatic fibrosis,” Nature Medicine, vol. 13, no. 11, pp. 1324–1332, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. B. Lemaitre, E. Nicolas, L. Michaut, J.-M. Reichhart, and J. A. Hoffmann, “The dorsoventral regulatory gene cassette spatzle/Toll/Cactus controls the potent antifungal response in Drosophila adults,” Cell, vol. 86, no. 6, pp. 973–983, 1996. View at Publisher · View at Google Scholar
  30. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway Jr., “A human homologue of the Drosophila Toll protein signals activation of adaptive immunity,” Nature, vol. 388, no. 6640, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at PubMed
  31. A. Poltorak, I. Smirnova, and I. Smirnova, “Genetic and physical mapping of the Lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region,” Blood Cells, Molecules, and Diseases, vol. 24, no. 3, pp. 340–355, 1998. View at Publisher · View at Google Scholar
  32. K. Sato, T. Ishikawa, and T. Ishikawa, “Expression of Toll-like receptors in chronic hepatitis C virus infection,” Journal of Gastroenterology and Hepatology, vol. 22, no. 10, pp. 1627–1632, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. R. Broering, J. Wu, and J. Wu, “Toll-like receptor-stimulated non-parenchymal liver cells can regulate hepatitis C virus replication,” Journal of Hepatology, vol. 48, no. 6, pp. 914–922, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. N. Wang, Y. Liang, S. Devaraj, J. Wang, S. M. Lemon, and K. Li, “Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells,” Journal of Virology, vol. 83, no. 19, pp. 9824–9834, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. J. Chen, W. Xu, T. Zhou, Y. Ding, J. Duan, and F. Huang, “Inhibitory role of Toll-like receptors agonists in Plasmodium yoelii liver stage development,” Parasite Immunology, vol. 31, no. 8, pp. 466–473, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. K. Adachi, H. Tsutsui, and H. Tsutsui, “Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism,” Journal of Immunology, vol. 167, no. 10, pp. 5928–5934, 2001. View at Google Scholar
  37. K. Adachi, H. Tsutsui, and H. Tsutsui, “Contribution of CD1d-unrestricted hepatic DX5+ NKT cells to liver injury in Plasmodium berghei-parasitized erythrocyte-injected mice,” International Immunology, vol. 16, no. 6, pp. 787–798, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. B. T. Edelson and E. R. Unanue, “MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity,” Journal of Immunology, vol. 169, no. 7, pp. 3869–3875, 2002. View at Google Scholar
  39. E. Seki, H. Tsutsui, and H. Tsutsui, “Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice,” Journal of Immunology, vol. 169, no. 7, pp. 3863–3868, 2002. View at Google Scholar
  40. D. M. Appledorn, S. Patial, A. McBride, S. Godbehere, N. Van Rooijen, N. Parameswaran, and A. Amalfitano, “Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo,” Journal of Immunology, vol. 181, no. 3, pp. 2134–2144, 2008. View at Google Scholar
  41. K. A. Cavassani, M. Ishii, and M. Ishii, “TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events,” Journal of Experimental Medicine, vol. 205, no. 11, pp. 2609–2621, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. P. Matzinger, “The danger model: a renewed sense of self,” Science, vol. 296, no. 5566, pp. 301–305, 2002. View at Publisher · View at Google Scholar · View at PubMed
  43. C. A. Janeway Jr. and R. Medzhitov, “Innate immune recognition,” Annual Review of Immunology, vol. 20, pp. 197–216, 2002. View at Publisher · View at Google Scholar · View at PubMed
  44. T. Dao, M. Exley, and M. Exley, “Involvement of CD1 in peripheral deletion of T lymphocytes is independent of NK T cells,” Journal of Immunology, vol. 166, no. 5, pp. 3090–3097, 2001. View at Google Scholar
  45. S. Chang, A. Dolganiuc, and G. Szabo, “Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 479–487, 2007. View at Publisher · View at Google Scholar · View at PubMed
  46. A. Dolganiuc, S. Oak, K. Kodys, D. T. Golenbock, R. W. Finberg, E. Kurt-Jones, and G. Szabo, “Hepatitis C core and nonstructural 3 proteins trigger Toll-like receptor 2-mediated pathways and inflammatory activation,” Gastroenterology, vol. 127, no. 5, pp. 1513–1524, 2004. View at Publisher · View at Google Scholar
  47. D. Constantin, A. Cordenier, K. Robinson, D. A. A. Ala'Aldeen, and S. Murphy, “Neisseria meningitidis-induced death of cerebrovascular endothelium: mechanisms triggering transcriptional activation of inducible nitric oxide synthase,” Journal of Neurochemistry, vol. 89, no. 5, pp. 1166–1174, 2004. View at Publisher · View at Google Scholar · View at PubMed