Gastroenterology Research and Practice

Gastroenterology Research and Practice / 2013 / Article
Special Issue

Helicobacter pylori and Systemic Disease

View this Special Issue

Research Article | Open Access

Volume 2013 |Article ID 390967 | https://doi.org/10.1155/2013/390967

Hsiang-Yao Shih, Fu-Chen Kuo, Sophie S. W. Wang, Yi-Chang Liu, Meng-Chieh Wu, Yang-Pei Chang, Guei-Fen Chiu, Pi-Yu Chang, Deng-Chyang Wu, Ming-Chia Hsieh, Yao-Li Chen, "Helicobacter pylori Infection and Anemia in Taiwanese Adults", Gastroenterology Research and Practice, vol. 2013, Article ID 390967, 4 pages, 2013. https://doi.org/10.1155/2013/390967

Helicobacter pylori Infection and Anemia in Taiwanese Adults

Academic Editor: Chao-Hung Kuo
Received01 Aug 2013
Revised30 Sep 2013
Accepted17 Oct 2013
Published18 Nov 2013

Abstract

Background. Chronic Helicobacter pylori infection and iron-deficiency anemia (IDA) are common in adults. Although the most common causes of IDA usually arise from the gastrointestinal tract, the association between chronic Helicobacter pylori infection and anemia remains unclear. Aim. To evaluate the association of chronic Helicobacter pylori infection and IDA. Materials and Methods. We enrolled 882 patients from January 2010 to April 2013. The status of Helicobacter pylori (H.p) infection was confirmed and blood samples from the same participants were taken on the same day to check the level of hemoglobin, serum iron, ferritin, and total iron-binding capacity (TIBC). Results. No significant difference was noted from the demographic data. The average level of hemoglobin (Hb) was not different between negative and positive groups, pos 13.57 g/dL versus neg 13.65 g/dL ( ). Although the levels of serum IDA related parameters were expected in positive group (lower serum iron and ferritin and higher TIBC) these differences did not reach statistical significance ( for iron, for ferritin, and for TIBC). Conclusion. Chronic Helicobacter pylori infection is not attributed to IDA. The levels of hemoglobin, serum iron and ferritin, and TIBC remain unaffected after chronic H.p infection. Large-scale clinical studies are needed to prove the association.

1. Introduction

Chronic Helicobacter pylori (H.p) infection is responsible for many alimentary tract disorders, including gastroduodenal ulcer, atrophic gastritis, intestinal metaplasia, gastric mucosa-associated lymphoid tissue lymphoma (MALT lymphoma), and gastric adenocarcinoma [1]. Furthermore, it has been implicated in some extragastric diseases, such as unexplained iron-deficiency anemia (IDA), idiopathic thrombocytopenic purpura (ITP), and vitamin B12 deficiency [2, 3].

Iron-deficiency anemia (IDA) is the most common cause of anemia in the world and 500 to 600 million people are affected. IDA is also the most common nutritional deficiency in undeveloped and developed worlds and possibly the most common organic disorder in clinical practice [4, 5]. Anemia is a common manifestation of various etiologies, for example, iron-deficiency, vitamin B12 deficiency, folic acid deficiency, chronic illness, gastrointestinal bleeding, and so forth. Generally, it is attributed to three different pathogenic processes: (1) marrow production defects (hypoproliferation); (2) red cell maturation defects (ineffective erythropoiesis); and (3) decreased red cell survival (blood loss/hemolysis). Consequently, chronic H.p infection is likely to result in anemia. For example, chronic inflammation due to chronic H.p infection is one of the causes which have been related marrow production defects (hypoproliferation) [6]. Iron-deficiency anemia (IDA) is a common cause which occurs in 2–5% of adult males and postmenopausal females in developed countries [7, 8], and most of them resulted from gastrointestinal lesions. Chronic H.p infection usually causes a wide range of gastrointestinal mucosal lesions, such as chronic erosive gastritis, and is very likely to contribute to IDA in affected patients. In addition, chronic H.p infection frequently results in atrophic gastritis, which leads to hypo- or achlorhydria, which is the underlying cause for decreased iron absorption and increased iron uptake and utilization by the bacteria [4].

Despite all the assumptions, no strong evidence from clinical studies is available. Therefore, we hypothesize that chronic H.p infection is related to anemia and have conducted this prospective study to clarify the association between H.p infection and anemia.

2. Patients and Methods

2.1. Study Design and Patients

Initially, one thousand two hundred and eighteen patients (489 men and 729 women) were enrolled from gastroenterology clinics of three different hospitals, including Kaohsiung Medical University Hospital, Kaohsiung Municipal Hsiao-Kang Hospital, and Kaohsiung Municipal Tatung Hospital, from January 2010 to April 2013. All patients received the esophagogastroduodenoscopy (EGD) examination, and endoscopic biopsy from gastric mucosa was undertaken for confirmation of H.p infection. Exclusion criteria for H.p infection included use of antibiotics, bismuth, or proton pump inhibitor (PPI) within 4 weeks, previous gastric surgery, and history of eradication of H.p. Besides blood was drawn from all of them for hemoglobin, serum iron, serum total iron-binding capacity (TIBC) and serum ferritin checks on the same day. Exclusion criteria for anemia included past history of anemia with known etiology other than H.p, known hematologic disorder causing anemia, evident gastrointestinal bleeding within one month, and evident blood loss within one month. After exclusion, we enrolled 882 cases for further analysis. As for the evaluation of chronic H.p infection and iron-deficiency anemia, we just enrolled 770 cases due to the patients’ unwillingness to be checked for serum iron level.

2.2. Diagnosis of H. pylori Infection

We used culture, histology, rapid urease test, and 13C-urea breath test (UBT) in this study. The Columbia blood agar plate is made use of for culture for endoscopic biopsy specimens. The culture demonstrated positive if one or more colonies showed Gram-negative, oxidase (+), catalase (+), urease (+), or spiral or curved rods in morphology. We also evaluated the presence of H. pylori in the histology of gastric biopsy specimens by experienced pathologists. If the color of rapid urease test (sensitivity 93–97%, specificity 98%) [9], CLO test (Delta West Bentley, WA, Australia), turned pink or red at room temperature 6 hours after the EGD examination, it was interpreted as positive. The 13C-urea breath test used in this study was from the Institute of Nuclear Energy Research, Taiwan. The definition of positive H. pylori infection was that either culture was positive or at least two positive results of rapid urease test, histology, or UBT [10, 11].

2.3. Definition of Anemia

Anemia was defined as serum hemoglobin (Hb) <14 g/dL in males and <12 g/dL in females. The definition of iron-deficiency anemia (IDA) was serum iron <30 μg/dL and total iron-binding capacity (TIBC) >400 μg/dL [6]. We also analyzed the association between chronic H.p infection and iron-deficient erythropoiesis as definition of serum iron <50 μg/dL and total iron-binding capacity (TIBC) >380 μg/dL [6]. Normal ranges of serum iron, TIBC, and ferritin are 45–182 μg/dL (male)/28–170 μg/dL (female), 257–421 μg/dL (male)/254–450 μg/dL (female), and 24–336 ng/mL (male)/11–307 ng/mL (female), respectively.

2.4. Statistical Analysis

The demographic characteristics and average serum iron, TIBC, and ferritin levels were analyzed by Student’s -test. The relationships between H.p infection and anemia and IDA and iron-deficient erythropoiesis were analyzed by Chi-square test. Statistical significance was considered as .

3. Results

3.1. Demographic Characteristics

A total of 882 patients were enrolled into the study. The average ages of negative and positive H.p infection groups were and years old, respectively, ranging from 21 to 88 years old (Table 1). No significant difference of the demographic characteristics, including age, sex, cigarette smoking, hypertension and cerebrovascular disease, was demonstrated between negative and positive H.p infection groups.


H.p (−)
(