Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2012, Article ID 163054, 13 pages
http://dx.doi.org/10.1155/2012/163054
Research Article

Changes in Soluble-N in Forest and Pasture Soils after Repeated Applications of Tannins and Related Phenolic Compounds

1USDA-ARS Appalachian Farming Systems Research Center, 1224 Airport Road, Beaver, WV 25813-9423, USA
2Department of Chemistry and Biochemistry, Miami University, 160 Hughes Laboratories, 701 East High Street, Oxford, OH 45056, USA

Received 15 September 2011; Accepted 7 December 2011

Academic Editor: Dexter B. Watts

Copyright © 2012 Jonathan J. Halvorson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Hättenschwiler and P. M. Vitousek, “The role of polyphenols in terrestrial ecosystem nutrient cycling,” Trends in Ecology and Evolution, vol. 15, no. 6, pp. 238–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. T. E. C. Kraus, R. A. Dahlgren, and R. J. Zasoski, “Tannins in nutrient dynamics of forest ecosystems—a review,” Plant and Soil, vol. 256, no. 1, pp. 41–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Horner, J. R. Gosz, and R. G. Cates, “The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems,” American Naturalist, vol. 132, no. 6, pp. 869–883, 1988. View at Google Scholar · View at Scopus
  4. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt et al., “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” European Journal of Soil Science, vol. 57, no. 4, pp. 426–445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. B. Coulson, R. I. Davies, and D. A. Lewis, “Polyphenols in plant, humus and soil. 1. Polyphenols of leaves, litter and superficial humus from mull and mor sites,” Journal of Soil Science, vol. 11, no. 1, pp. 20–29, 1960. View at Google Scholar
  6. W. R. C. Handley, “Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen for plant growth,” Plant and Soil, vol. 15, no. 1, pp. 37–73, 1961. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Lewis and R. Starkey, “Vegetable tannins, their decomposition and effects of decomposition of some organic compounds,” Soil Science, vol. 106, pp. 241–247, 1968. View at Google Scholar
  8. J. Basaraba, “Influence of vegetable tannins on nitrification in soil,” Plant and Soil, vol. 21, no. 1, pp. 8–16, 1964. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Basaraba and R. L. Starkey, “Effect of plant tannins on decomposition of organic substances,” Soil Science, vol. 101, no. 1, pp. 17–23, 1966. View at Google Scholar
  10. P. Kraal, K. G. J. Nierop, J. Kaal, and A. Tietema, “Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins,” Soil Biology and Biochemistry, vol. 41, no. 11, pp. 2318–2327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. D. Joanisse, R. L. Bradley, C. M. Preston, and G. D. Bending, “Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea mariana),” New Phytologist, vol. 181, no. 1, pp. 187–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. E. C. Kraus, R. J. Zasoski, R. A. Dahlgren, W. R. Horwath, and C. M. Preston, “Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species,” Soil Biology and Biochemistry, vol. 36, no. 2, pp. 309–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Mutabaruka, K. Hairiah, and G. Cadisch, “Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories,” Soil Biology and Biochemistry, vol. 39, no. 7, pp. 1479–1492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Sivapalan, V. Fernando, and M. W. Thenabadu, “Humified phenol-rich plant residues and soil urease activity,” Plant and Soil, vol. 70, no. 1, pp. 143–146, 1983. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Sivapalan, V. Fernando, and M. W. Thenabadu, “N-mineralization in polyphenol-rich plant residues and their effect on nitrification of applied ammonium sulphate,” Soil Biology and Biochemistry, vol. 17, no. 4, pp. 547–551, 1985. View at Google Scholar · View at Scopus
  16. A. Scalbert, “Antimicrobial properties of tannins,” Phytochemistry, vol. 30, no. 12, pp. 3875–3883, 1991. View at Google Scholar · View at Scopus
  17. F. A. Einhellig, “Mode of allelochemical action of phenolic compounds,” in Allelopathy: Chemistry and Mode of Action, F. A. Macías et al., Ed., pp. 217–238, CRC Press, Boca Raton, Fla, USA, 2004. View at Google Scholar
  18. T. K. Bhat, B. Singh, and O. P. Sharma, “Microbial degradation of tannins—a current perspective,” Biodegradation, vol. 9, no. 5, pp. 343–357, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. J. P. Schimel, R. G. Cates, and R. Ruess, “The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga,” Biogeochemistry, vol. 42, no. 1-2, pp. 221–234, 1998. View at Google Scholar · View at Scopus
  20. R. E. Benoit and R. L. Starkey, “Enzyme inactivation as a factor in the inhibition of decomposition of organic matter by tannins,” Soil Science, vol. 105, no. 4, pp. 203–208, 1968. View at Google Scholar
  21. G. D. Joanisse, R. L. Bradley, C. M. Preston, and A. D. Munson, “Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia,” New Phytologist, vol. 175, no. 3, pp. 535–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. C. Rillig, B. A. Caldwell, H. A. B. Wösten, and P. Sollins, “Role of proteins in soil carbon and nitrogen storage: controls on persistence,” Biogeochemistry, vol. 85, no. 1, pp. 25–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Adamczyk, S. Adamczyk, A. Smolander, and V. Kitunen, “Tannic acid and Norway spruce condensed tannins can precipitate various organic nitrogen compounds,” Soil Biology and Biochemistry, vol. 43, no. 3, pp. 628–637, 2011. View at Publisher · View at Google Scholar
  24. E. Castells, “Indirect effects of phenolics on plant performance by altering nitrogen cycling: another mechanism of plant–plant negative interactions,” in Allelopathy in Sustainable Agriculture and Forestry, R. S. Zeng, A. U. Mallik, and S. M. Luo, Eds., pp. 137–156, Springer, New York., NY, USA, 2008. View at Google Scholar
  25. N. Wurzburger and R. L. Hendrick, “Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest,” Journal of Ecology, vol. 97, no. 3, pp. 528–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. R. R. Northup, R. A. Dahlgren, and J. G. McColl, “Polyphenols as regulators of plant-litter-soil interactions in northern California's pygmy forest: a positive feedback?” Biogeochemistry, vol. 42, no. 1-2, pp. 189–220, 1998. View at Google Scholar · View at Scopus
  27. G. D. Bending and D. J. Read, “Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi,” Soil Biology and Biochemistry, vol. 28, no. 12, pp. 1595–1602, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. G. D. Bending and D. J. Read, “Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi,” Soil Biology and Biochemistry, vol. 28, no. 12, pp. 1603–1612, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Kaal, K. G. J. Nierop, and J. M. Verstraten, “Retention of tannic acid and condensed tannin by Fe-oxide-coated quartz sand,” Journal of Colloid and Interface Science, vol. 287, no. 1, pp. 72–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. El Azhar, R. Verhe, M. Proot, P. Sandra, and W. Verstraete, “Binding of nitrite-N on polyphenols during nitrification,” Plant and Soil, vol. 94, no. 3, pp. 369–382, 1986. View at Publisher · View at Google Scholar · View at Scopus
  31. S. El Azhar, J. Vandenabeele, and W. Verstraete, “Nitrification and organic nitrogen formation in soils,” Plant and Soil, vol. 94, no. 3, pp. 383–399, 1986. View at Publisher · View at Google Scholar · View at Scopus
  32. R. D. Fitzhugh, G. M. Lovett, and R. T. Venterea, “Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA,” Global Change Biology, vol. 9, no. 11, pp. 1591–1601, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. J. Halvorson, J. M. Gonzalez, A. E. Hagerman, and J. L. Smith, “Sorption of tannin and related phenolic compounds and effects on soluble-N in soil,” Soil Biology and Biochemistry, vol. 41, no. 9, pp. 2002–2010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Halvorson, J. M. Gonzalez, and A. E. Hagerman, “Repeated applications of tannins and related phenolic compounds are retained by soil and affect cation exchange capacity,” Soil Biology and Biochemistry, vol. 43, no. 6, pp. 1139–1147, 2011. View at Publisher · View at Google Scholar
  35. J. J. Halvorson and J. M. Gonzalez, “Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein,” Soil Biology and Biochemistry, vol. 40, no. 1, pp. 186–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. Halvorson and J. M. Gonzalez, “Bradford reactive soil protein in Appalachian soils: distribution and response to incubation, extraction reagent and tannins,” Plant and Soil, vol. 286, no. 1-2, pp. 339–356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon and organic matter,” in Methods of Soil Analysis Part 3: Chemical Methods, D. L. Sparks et al., Ed., Soil Science Society of America Books Series No. 5, pp. 961–1010, Soil Science Society of America, Inc., Madison, Wis, USA, 1996. View at Google Scholar
  38. H. Ciesielski and T. Sterckeman, “Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions,” Agronomie, vol. 17, no. 1, pp. 1–7, 1997. View at Google Scholar · View at Scopus
  39. H. Ciesielski and T. Sterckeman, “A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils,” Agronomie, vol. 17, no. 1, pp. 9–16, 1997. View at Google Scholar · View at Scopus
  40. ISO 23470:2007, “Soil quality—determination of effective cation exchange capacity (CEC) and exchangeable cations using a hexamminecobalt trichloride solution,” ISO/TC 190, Soil quality Subcommitte SC3, Chemical methods and soil characteristics, 2007.
  41. A. Ghani, M. Dexter, and K. W. Perrott, “Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation,” Soil Biology and Biochemistry, vol. 35, no. 9, pp. 1231–1243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Curtin, C. E. Wright, M. H. Beare, and F. M. McCallum, “Hot water-extractable nitrogen as an indicator of soil nitrogen availability,” Soil Science Society of America Journal, vol. 70, no. 5, pp. 1512–1521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Gallet and P. Lebreton, “Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem,” Soil Biology and Biochemistry, vol. 27, no. 2, pp. 157–165, 1995. View at Google Scholar · View at Scopus
  44. A. E. Hagerman, The Tannin Handbook, Miami University, Oxford, Ohio, USA, 2002.
  45. A. E. Hagerman, M. E. Rice, and N. T. Ritchard, “Mechanisms of Protein Precipitation for Two Tannins, Pentagalloyl Glucose and Epicatechin16 (4→8) Catechin (Procyanidin),” Journal of Agricultural and Food Chemistry, vol. 46, no. 7, pp. 2590–2595, 1998. View at Google Scholar · View at Scopus
  46. Z. Lu, G. Nie, P. S. Belton, H. Tang, and B. Zhao, “Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives,” Neurochemistry International, vol. 48, no. 4, pp. 263–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger, SAS System for Mixed Models, SAS Institute Inc., Cary, NC, USA, 1996.
  48. SAS, “SAS OnlineDoc, Version 8,” SAS Institute, Inc., Cary, NC, USA, 1999.
  49. P. Leinweber, H. R. Schulten, and M. Korschens, “Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment,” Biology and Fertility of Soils, vol. 20, no. 1, pp. 17–23, 1995. View at Google Scholar · View at Scopus
  50. R. L. Bradley, B. D. Titus, and C. P. Preston, “Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir,” Soil Biology and Biochemistry, vol. 32, no. 8-9, pp. 1227–1240, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. K. G. J. Nierop and J. M. Verstraten, “Fate of tannins in Corsican pine litter,” Journal of Chemical Ecology, vol. 32, no. 12, pp. 2709–2719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Adamczyk, V. Kitunen, and A. Smolander, “Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce,” Soil Biology and Biochemistry, vol. 41, no. 10, pp. 2085–2093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, John Wiley & Sons, 2nd edition, 1994.
  54. P. J. Hernes, R. Benner, G. L. Cowie, M. A. Goi, B. A. Bergamaschi, and J. I. Hedges, “Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach,” Geochimica et Cosmochimica Acta, vol. 65, no. 18, pp. 3109–3122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Chen and A. E. Hagerman, “Reaction pH and protein affect the oxidation products of β-pentagalloyl glucose,” Free Radical Research, vol. 39, no. 2, pp. 117–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. J. J. Halvorson, J. M. Gonzalez, and A. E. Hagerman, “Effects of tannins on soil carbon, cation exchange capacity, and metal solubility,” in Proceedings of the 94th Ecological Society of America Annual Meeting, Albuquerque, NM, USA, August 2009.
  57. J. Kaal, K. G. J. Nierop, and J. M. Verstraten, “Interactions between tannins and goethite- or ferrihydrite-coated quartz sand: influence of pH and evaporation,” Geoderma, vol. 139, no. 3-4, pp. 379–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Liu, “Comment on "surface complexation of catechol to metal oxides: an ATR-FTIR, adsorption, and dissolution study",” Environmental Science and Technology, vol. 44, no. 16, pp. 6517–6518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. N. V. Hue, S. Vega, and J. A. Silva, “Manganese toxicity in a Hawaiian Oxisol affected by soil pH and organic amendments,” Soil Science Society of America Journal, vol. 65, no. 1, pp. 153–160, 2001. View at Google Scholar · View at Scopus
  60. A. T. Stone and J. J. Morgan, “Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics,” Environmental Science and Technology, vol. 18, no. 8, pp. 617–624, 1984. View at Google Scholar · View at Scopus
  61. R. P. Udawatta and L. D. Godsey, “Agroforestry comes of age: putting science into practice,” Agroforestry Systems, vol. 79, no. 1, pp. 1–4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. C. M. Feldhake, J. P. S. Neel, and D. P. Belesky, “Establishment and production from thinned mature deciduous-forest silvopastures in Appalachia,” Agroforestry Systems, vol. 79, no. 1, pp. 31–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. J. P. S. Neel, C. M. Feldhake, and D. P. Belesky, “Influence of solar radiation on the productivity and nutritive value of herbage of cool-season species of an understorey sward in a mature conifer woodland,” Grass and Forage Science, vol. 63, no. 1, pp. 38–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. V. D. Nair, S. G. Haile, G. A. Michel, and P. K. R. Nair, “Environmental quality improvement of agricultural lands through silvopasture in Southeastern United States,” Scientia Agricola, vol. 64, no. 5, pp. 513–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. S. T. Berthrong, E. G. Jobbágy, and R. B. Jackson, “A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation,” Ecological Applications, vol. 19, no. 8, pp. 2228–2241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. T. E. Staley, J. M. Gonzalez, and J. P. S. Neel, “Conversion of deciduous forest to silvopasture produces soil properties indicative of rapid transition to improved pasture,” Agroforestry Systems, vol. 74, no. 3, pp. 267–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. E. H. Majcher, J. Chorover, J. M. Bollag, and P. M. Huang, “Evolution of CO2 during birnessite-induced oxidation of 14C-labeled catechol,” Soil Science Society of America Journal, vol. 64, no. 1, pp. 157–163, 2000. View at Google Scholar · View at Scopus
  68. H. M. Appel, “Phenolics in ecological interactions: the importance of oxidation,” Journal of Chemical Ecology, vol. 19, no. 7, pp. 1521–1552, 1993. View at Publisher · View at Google Scholar · View at Scopus
  69. T. B. Kinraide and A. E. Hagermann, “Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+), and selenate (SeO42) in wheat roots: a descriptive and mathematical assessment,” Physiologia plantarum, vol. 139, no. 1, pp. 68–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. T. N. Barry and W. C. McNabb, “The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants,” British Journal of Nutrition, vol. 81, no. 4, pp. 263–272, 1999. View at Google Scholar · View at Scopus
  71. B. R. Min, T. N. Barry, G. T. Attwood, and W. C. McNabb, “The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review,” Animal Feed Science and Technology, vol. 106, no. 1–4, pp. 3–19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Hoste, F. Jackson, S. Athanasiadou, S. M. Thamsborg, and S. O. Hoskin, “The effects of tannin-rich plants on parasitic nematodes in ruminants,” Trends in Parasitology, vol. 22, no. 6, pp. 253–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. I. Mueller-Harvey, “Unravelling the conundrum of tannins in animal nutrition and health,” Journal of the Science of Food and Agriculture, vol. 86, no. 13, pp. 2010–2037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Coulis, S. Hättenschwiler, S. Rapior, and S. Coq, “The fate of condensed tannins during litter consumption by soil animals,” Soil Biology and Biochemistry, vol. 41, no. 12, pp. 2573–2578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. T. E. C. Kraus, Z. Yu, C. M. Preston, R. A. Dahlgren, and R. J. Zasoski, “Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins,” Journal of Chemical Ecology, vol. 29, no. 3, pp. 703–730, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Coq, J. M. Souquet, E. Meudec, V. Cheynier, and S. Hättenschwiler, “Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana,” Ecology, vol. 91, no. 7, pp. 2080–2091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. J. M. Talbot and A. C. Finzi, “Differential effects of sugar maple, red oak, and hemlock tannins on carbon and nitrogen cycling in temperate forest soils,” Oecologia, vol. 155, no. 3, pp. 583–592, 2008. View at Publisher · View at Google Scholar · View at Scopus