Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2010 (2010), Article ID 587463, 7 pages
http://dx.doi.org/10.4061/2010/587463
Review Article

Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

Neural Regeneration, Institute of Reconstructive Neurobiology, University Hospital Bonn, University Bonn, 53127 Bonn, Germany

Received 24 February 2010; Accepted 13 May 2010

Academic Editor: Marcella Reale

Copyright © 2010 Bettina Linnartz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Biber, H. Neumann, K. Inoue, and H. W. G. M. Boddeke, “Neuronal 'On' and 'Off' signals control microglia,” Trends in Neurosciences, vol. 30, no. 11, pp. 596–602, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. U.-K. Hanisch and H. Kettenmann, “Microglia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. R. M. Ransohoff and V. H. Perry, “Microglial physiology: unique stimuli, specialized responses,” Annual Review of Immunology, vol. 27, pp. 119–145, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. F. Aloisi, “Immune function of microglia,” GLIA, vol. 36, no. 2, pp. 165–179, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. J. Carson, “Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis,” GLIA, vol. 40, no. 2, pp. 218–231, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. A. E. Cardona, E. P. Pioro, and E. P. Pioro, “Control of microglial neurotoxicity by the fractalkine receptor,” Nature Neuroscience, vol. 9, no. 7, pp. 917–924, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. H. Neumann, M. R. Kotter, and R. J. M. Franklin, “Debris clearance by microglia: an essential link between degeneration and regeneration,” Brain, vol. 132, no. 2, pp. 288–295, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. L. Monje, H. Toda, and T. D. Palmer, “Inflammatory blockade restores adult hippocampal neurogenesis,” Science, vol. 302, no. 5651, pp. 1760–1765, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. Hu, C. C. Chao, L. C. Ehrlich, W. S. Sheng, R. L. Sutton, G. L. Rockswold, and P. K. Peterson, “Inhibition of microglial cell RANTES production by IL-10 and TGF-β,” Journal of Leukocyte Biology, vol. 65, no. 6, pp. 815–821, 1999. View at Google Scholar · View at Scopus
  10. R. E. Mrak and W. S. T. Griffin, “Glia and their cytokines in progression of neurodegeneration,” Neurobiology of Aging, vol. 26, no. 3, pp. 349–354, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Meyer-Luehmann, T. L. Spires-Jones, and T. L. Spires-Jones, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease,” Nature, vol. 451, no. 7179, pp. 720–724, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. E. Hickman, E. K. Allison, and J. El Khoury, “Microglial dysfunction and defective β-amyloid clearance pathways in aging alzheimer's disease mice,” Journal of Neuroscience, vol. 28, no. 33, pp. 8354–8360, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. A. Grathwohl, R. E. Kälin, and R. E. Kälin, “Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia,” Nature Neuroscience, vol. 12, no. 11, pp. 1361–1363, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. R. Stewart, L. M. Stuart, and L. M. Stuart, “CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer,” Nature Immunology, vol. 11, no. 2, pp. 155–161, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Y. Liu, S. Walter, and S. Walter, “LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide,” Brain, vol. 128, no. 8, pp. 1778–1789, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. G. Reed-Geaghan, J. C. Savage, A. G. Hise, and G. E. Landreth, “CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation,” Journal of Neuroscience, vol. 29, no. 38, pp. 11982–11992, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. Kielian, “Toll-like receptors in central nervous system glial inflammation and homeostasis,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 711–730, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Colonna, “Trems in the immune system and beyond,” Nature Reviews Immunology, vol. 3, no. 6, pp. 445–453, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. A. Hamerman, M. Ni, J. R. Killebrew, C.-L. Chu, and C. A. Lowell, “The expanding roles of ITAM adapters FcRγ and DAP12 in myeloid cells,” Immunological Reviews, vol. 232, no. 1, pp. 42–58, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. F. Nimmerjahn and J. V. Ravetch, “Fc-receptors as regulators of immunity,” Advances in Immunology, vol. 96, pp. 179–204, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. S. Ziegenfuss, R. Biswas, and R. Biswas, “Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling,” Nature, vol. 453, no. 7197, pp. 935–939, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. E. Tomasello, C. Cant, and C. Cant, “Association of signal-regulatory proteins β with KARAP/DAP-12,” European Journal of Immunology, vol. 30, no. 8, pp. 2147–2156, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. M. R. Daws, P. M. Sullam, E. C. Niemi, T. T. Chen, N. K. Tchao, and W. E. Seaman, “Pattern recognition by TREM-2: binding of anionic ligands,” Journal of Immunology, vol. 171, no. 2, pp. 594–599, 2003. View at Google Scholar · View at Scopus
  24. K. Takahashi, C. D. P. Rochford, and H. Neumann, “Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2,” Journal of Experimental Medicine, vol. 201, no. 4, pp. 647–657, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. Gaikwad, S. Larionov, and S. Larionov, “Signal regulatory protein-β1: a microglial modulator of phagocytosis in Alzheimer's disease,” American Journal of Pathology, vol. 175, no. 6, pp. 2528–2539, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E.-N. N'Diaye, C. S. Branda, and C. S. Branda, “TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria,” Journal of Cell Biology, vol. 184, no. 2, pp. 215–223, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. P. R. Crocker, J. C. Paulson, and A. Varki, “Siglecs and their roles in the immune system,” Nature Reviews Immunology, vol. 7, no. 4, pp. 255–266, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. Salminen and K. Kaarniranta, “Siglec receptors and hiding plaques in Alzheimer's disease,” Journal of Molecular Medicine, vol. 87, no. 7, pp. 697–701, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. T. Angata, S. C. Kerr, D. R. Greaves, N. M. Varki, P. R. Crocker, and A. Varki, “Cloning and characterization of human Siglec-11: a recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia,” Journal of Biological Chemistry, vol. 277, no. 27, pp. 24466–24474, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. V. Ravetch and S. Bolland, “IgG Fc receptors,” Annual Review of Immunology, vol. 19, pp. 275–290, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. F. Nimmerjahn and J. V. Ravetch, “Fcγ receptors: old friends and new family members,” Immunity, vol. 24, no. 1, pp. 19–28, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. L. Stephens, C. Ellson, and P. Hawkins, “Roles of PI3Ks in leukocyte chemotaxis and phagocytosis,” Current Opinion in Cell Biology, vol. 14, no. 2, pp. 203–213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. E. García-García and C. Rosales, “Signal transduction during Fc receptor-mediated phagocytosis,” Journal of Leukocyte Biology, vol. 72, no. 6, pp. 1092–1108, 2002. View at Google Scholar · View at Scopus
  34. E. Ulvestad, K. Williams, C. Vedeler, J. Antel, H. Nyland, S. Mørk, and R. Matre, “Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG,” Journal of the Neurological Sciences, vol. 121, no. 2, pp. 125–131, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. N. S. Peress, J. Siegelman, H. B. Fleit, M. W. Fanger, and E. Perillo, “Monoclonal antibodies identify three IgG Fc receptors in normal human central nervous system,” Clinical Immunology and Immunopathology, vol. 53, no. 2 I, pp. 268–280, 1989. View at Google Scholar · View at Scopus
  36. F. Bard, C. Cannon, and C. Cannon, “Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease,” Nature Medicine, vol. 6, no. 8, pp. 916–919, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. P. Das, V. Howard, N. Loosbrock, D. Dickson, M. P. Murphy, and T. E. Golde, “Amyloid-β immunization effectively reduces amyloid deposition in FcRγ/ knock-out mice,” Journal of Neuroscience, vol. 23, no. 24, pp. 8532–8538, 2003. View at Google Scholar · View at Scopus
  38. M. Colonna, “DAP12 signaling: from immune cells to bone modeling and brain myelination,” Journal of Clinical Investigation, vol. 111, no. 3, pp. 313–314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Mócsai, C. L. Abram, Z. Jakus, Y. Hu, L. L. Lanier, and C. A. Lowell, “Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs,” Nature Immunology, vol. 7, no. 12, pp. 1326–1333, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. H. Cao, U. Lakner, B. de Bono, J. A. Traherne, J. Trowsdale, and A. D. Barrow, “SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans,” European Journal of Immunology, vol. 38, no. 8, pp. 2303–2315, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. C. D. Schmid, L. N. Sautkulis, and L. N. Sautkulis, “Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia,” Journal of Neurochemistry, vol. 83, no. 6, pp. 1309–1320, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Frank, G. J. Burbach, M. Bonin, M. Walter, W. Streit, I. Bechmann, and T. Deller, “TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice,” GLIA, vol. 56, no. 13, pp. 1438–1447, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. K. Takahashi, M. Prinz, M. Stagi, O. Chechneva, and H. Neumann, “TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis,” PLoS Medicine, vol. 4, no. 4, pp. 675–689, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. E. Chouery, V. Delague, A. Bergougnoux, S. Koussa, J. L. Serre, and A. Megarbane, “Mutations in TREM2 lead to pure early-onset dementia without bone cysts,” Human Mutation, vol. 29, no. 9, pp. E194–E204, 2008. View at Google Scholar
  45. J. Paloneva, M. Kestilä, and M. Kestilä, “Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts,” Nature Genetics, vol. 25, no. 3, pp. 357–361, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. L. L. Lanier and A. B. H. Bakker, “The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function,” Immunology Today, vol. 21, no. 12, pp. 611–614, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Bouchon, C. Hernández-Munain, M. Cella, and M. Colonna, “A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells,” Journal of Experimental Medicine, vol. 194, no. 8, pp. 1111–1122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Lu, X. Wu, and B. K. Teh, “The regulatory roles of C1q,” Immunobiology, vol. 212, no. 4-5, pp. 245–252, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. V. Lauvrak, O. H. Brekke, Ø. Ihle, and B. H. Lindqvist, “Identification and characterisation of C1q-binding phage displayed peptides,” Biological Chemistry, vol. 378, no. 12, pp. 1509–1519, 1997. View at Google Scholar · View at Scopus
  50. S. Wakselman, C. Béchade, A. Roumier, D. Bernard, A. Triller, and A. Bessis, “Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor,” Journal of Neuroscience, vol. 28, no. 32, pp. 8138–8143, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. Maier, Y. Peng, L. Jiang, T. J. Seabrook, M. C. Carroll, and C. A. Lemere, “Complement C3 deficiency leads to accelerated amyloid β plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice,” Journal of Neuroscience, vol. 28, no. 25, pp. 6333–6341, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. K. M. Lucin and T. Wyss-Coray, “Immune activation in brain aging and neurodegeneration: too much or too little?” Neuron, vol. 64, no. 1, pp. 110–122, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. J. Reichwald, S. Danner, K.-H. Wiederhold, and M. Staufenbiel, “Expression of complement system components during aging and amyloid deposition in APP transgenic mice,” Journal of Neuroinflammation, vol. 6, Article ID 35, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. P. Eikelenboom, C. E. Hack, J. M. Rozemuller, and F. C. Stam, “Complement activation in amyloid plaques in Alzheimer's dementia,” Virchows Archiv Abteilung B Cell Pathology, vol. 56, no. 4, pp. 259–262, 1989. View at Google Scholar · View at Scopus
  55. P. L. McGeer, H. Akiyama, S. Itagaki, and E. G. McGeer, “Activation of the classical complement pathway in brain tissue of Alzheimer patients,” Neuroscience Letters, vol. 107, no. 1–3, pp. 341–346, 1989. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Webster, L.-F. Lue, and L.-F. Lue, “Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer's disease,” Neurobiology of Aging, vol. 18, no. 4, pp. 415–421, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Wyss-Coray, F. Yan, A. H.-T. Lin, J. D. Lambris, J. J. Alexander, R. J. Quigg, and E. Masliah, “Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10837–10842, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. A. Varki and T. Angata, “Siglecs—the major subfamily of I-type lectins,” Glycobiology, vol. 16, no. 1, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. H. Cao, B. De Bono, K. Belov, E. S. Wong, J. Trowsdale, and A. D. Barrow, “Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region,” Immunogenetics, vol. 61, no. 5, pp. 401–417, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. T. Angata, T. Hayakawa, M. Yamanaka, A. Varki, and M. Nakamura, “Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates,” FASEB Journal, vol. 20, no. 12, pp. 1964–1973, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. T. Angata, Y. Tabuchi, K. Nakamura, and M. Nakamura, “Siglec-15: an immune system Siglec conserved throughout vertebrate evolution,” Glycobiology, vol. 17, no. 8, pp. 838–846, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. A. Varki, “Natural ligands for CD33-related Siglecs?” Glycobiology, vol. 19, no. 8, pp. 810–812, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. P. R. Crocker, “Siglecs in innate immunity,” Current Opinion in Pharmacology, vol. 5, no. 4, pp. 431–437, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. A. F. Carlin, S. Uchiyama, Y.-C. Chang, A. L. Lewis, V. Nizet, and A. Varki, “Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response,” Blood, vol. 113, no. 14, pp. 3333–3336, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. J. Zhao, D. M. Brooks, and D. I. Lurie, “Lipopolysaccharide-activated SHP-1-deficient motheaten microglia release increased nitric oxide, TNF-α, and IL-1β,” GLIA, vol. 53, no. 3, pp. 304–312, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. Y. Wang and H. Neumann, “Alleviation of neurotoxicity by microglial human Siglec-11,” Journal of Neuroscience, vol. 30, no. 9, pp. 3482–3488, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. E. Nutku, H. Aizawa, S. A. Hudson, and B. S. Bochner, “Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis,” Blood, vol. 101, no. 12, pp. 5014–5020, 2003. View at Google Scholar · View at Scopus
  68. S. Von Gunten, S. Yousefi, and S. Yousefi, “Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment,” Blood, vol. 106, no. 4, pp. 1423–1431, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. F. Lajaunias, J.-M. Dayer, and C. Chizzolini, “Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling,” European Journal of Immunology, vol. 35, no. 1, pp. 243–251, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus