Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 127984, 17 pages
http://dx.doi.org/10.4061/2011/127984
Review Article

Aβ Internalization by Neurons and Glia

Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7

Received 23 October 2010; Accepted 23 December 2010

Academic Editor: Anne Eckert

Copyright © 2011 Amany Mohamed and Elena Posse de Chaves. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Minati, T. Edginton, M. Grazia Bruzzone, and G. Giaccone, “Reviews: current concepts in alzheimer's disease: a multidisciplinary review,” American Journal of Alzheimer's Disease and other Dementias, vol. 24, no. 2, pp. 95–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Google Scholar · View at Scopus
  3. J. Hardy and D. Allsop, “Amyloid deposition as the central event in the aetiology of Alzheimer's disease,” Trends in Pharmacological Sciences, vol. 12, no. 10, pp. 383–388, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Google Scholar · View at Scopus
  5. D. J. Selkoe, “The molecular pathology of Alzheimer's disease,” Neuron, vol. 6, no. 4, pp. 487–498, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Wirths, G. Multhaup, and T. A. Bayer, “A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide—the first step of a fatal cascade,” Journal of Neurochemistry, vol. 91, no. 3, pp. 513–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. K. Gouras, C. G. Almeida, and R. H. Takahashi, “Intraneuronal Aβ accumulation and origin of plaques in Alzheimer's disease,” Neurobiology of Aging, vol. 26, no. 9, pp. 1235–1244, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Cuello, “Intracellular and extracellular Aβ, a tale of two neuropathologies,” Brain Pathology, vol. 15, no. 1, pp. 66–71, 2005. View at Google Scholar · View at Scopus
  9. F. M. LaFerla, K. N. Green, and S. Oddo, “Intracellular amyloid-β in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 8, no. 7, pp. 499–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Aho, M. Pikkarainen, M. Hiltunen, V. Leinonen, and I. Alafuzoff, “Immunohistochemical visualization of amyloid-β protein precursor and amyloid-β in extra- and intracellular compartments in the human brain,” Journal of Alzheimer's Disease, vol. 20, no. 4, pp. 1015–1028, 2010. View at Publisher · View at Google Scholar
  11. G. K. Gouras, D. Tampellini, R. H. Takahashi, and E. Capetillo-Zarate, “Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer's disease,” Acta Neuropathologica, vol. 119, no. 5, pp. 523–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. K. Gouras, J. Tsai, J. Naslund et al., “Intraneuronal Aβ42 accumulation in human brain,” American Journal of Pathology, vol. 156, no. 1, pp. 15–20, 2000. View at Google Scholar · View at Scopus
  13. M. R. D'Andrea, R. G. Nagele, H. Y. Wang, P. A. Peterson, and D. H. S. Lee, “Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease,” Histopathology, vol. 38, no. 2, pp. 120–134, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Wegiel, I. Kuchna, K. Nowicki et al., “Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration,” Acta Neuropathologica, vol. 113, no. 4, pp. 389–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Bayer and O. Wirths, “Intracellular accumulation of amyloid-Beta—a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease,” Frontiers in Aging Neuroscience, vol. 2, no. 8, 2010. View at Google Scholar
  16. D. Tampellini and G. K. Gouras, “Synapses, synaptic activity and intraneuronal abeta in Alzheimer's disease,” Frontiers in Aging Neuroscience, vol. 2, 2010. View at Google Scholar
  17. A. C. Cuello and F. Canneva, “Impact of intracellular β-amyloid in transgenic animals and cell models,” Neurodegenerative Diseases, vol. 5, no. 3-4, pp. 146–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Oddo, A. Caccamo, J. D. Shepherd et al., “Triple-transgenic model of Alzheimer's Disease with plaques and tangles: intracellular Aβ and synaptic dysfunction,” Neuron, vol. 39, no. 3, pp. 409–421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Billings, S. Oddo, K. N. Green, J. L. McGaugh, and F. M. LaFerla, “Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice,” Neuron, vol. 45, no. 5, pp. 675–688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Oddo, L. Billings, J. P. Kesslak, D. H. Cribbs, and F. M. LaFerla, “Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome,” Neuron, vol. 43, no. 3, pp. 321–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Wirths and T. A. Bayer, “Neuron loss in transgenic mouse models of Alzheimer's disease,” International Journal of Alzheimer's Disease, vol. 2010, Article ID 723782, 2010. View at Publisher · View at Google Scholar
  22. D. M. Skovronsky, R. W. Doms, and V. M. Y. Lee, “Detection of a novel intraneuronal pool of insoluble amyloid β protein that accumulates with time in culture,” Journal of Cell Biology, vol. 141, no. 4, pp. 1031–1039, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. P. Greenfield, J. Tsai, G. K. Gouras et al., “Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 742–747, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. R. H. Takahashi, C. G. Almeida, P. F. Kearney et al., “Oligomerization of Alzheimer's β-amyloid within processes and synapses of cultured neurons and brain,” Journal of Neuroscience, vol. 24, no. 14, pp. 3592–3599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Busciglio, A. Pelsman, C. Wong et al., “Altered metabolism of the amyloid β precursor protein is associated with mitochondrial dysfunction in Down's syndrome,” Neuron, vol. 33, no. 5, pp. 677–688, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. D. H. Chui, E. Dobo, T. Makifuchi et al., “Apoptotic neurons in Alzheimer's disease frequently show intracellular Aβ42 labeling,” Journal of Alzheimer's Disease, vol. 3, no. 2, pp. 231–239, 2001. View at Google Scholar · View at Scopus
  27. Y. Zhang, R. McLaughlin, C. Goodyer, and A. LeBlanc, “Selective cytotoxicity of intracellular amyloid β peptide1–42 through p53 and Bax in cultured primary human neurons,” Journal of Cell Biology, vol. 156, no. 3, pp. 519–529, 2002. View at Publisher · View at Google Scholar
  28. F. M. LaFerla, B. T. Tinkle, C. J. Bieberich, C. C. Haudenschild, and G. Jay, “The Alzheimer's Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice,” Nature Genetics, vol. 9, no. 1, pp. 21–29, 1995. View at Google Scholar · View at Scopus
  29. C. Casas, N. Sergeant, J. M. Itier et al., “Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ accumulation in a novel Alzheimer transgenic model,” American Journal of Pathology, vol. 165, no. 4, pp. 1289–1300, 2004. View at Google Scholar · View at Scopus
  30. R. H. Takahashi, T. A. Milner, F. Li et al., “Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology,” American Journal of Pathology, vol. 161, no. 5, pp. 1869–1879, 2002. View at Google Scholar · View at Scopus
  31. M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada et al., “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease,” Nature, vol. 451, no. 7179, pp. 720–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. G. Almeida, D. Tampellini, R. H. Takahashi et al., “Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses,” Neurobiology of Disease, vol. 20, no. 2, pp. 187–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Tampellini, J. Magrané, R. H. Takahashi et al., “Internalized antibodies to the Aβ domain of APP reduce neuronal Aβ and protect against synaptic alterations,” Journal of Biological Chemistry, vol. 282, no. 26, pp. 18895–18906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Echeverria and A. C. Cuello, “Intracellular A-beta amyloid, a sign for worse things to come?” Molecular Neurobiology, vol. 26, no. 2-3, pp. 299–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. K. A. Gyure, R. Durham, W. F. Stewart, J. E. Smialek, and J. C. Troncoso, “Intraneuronal Aβ-amyloid precedes development of amyloid plaques in Down syndrome,” Archives of Pathology and Laboratory Medicine, vol. 125, no. 4, pp. 489–492, 2001. View at Google Scholar · View at Scopus
  36. J. Näslund, V. Haroutunian, R. Mohs et al., “Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline,” Journal of the American Medical Association, vol. 283, no. 12, pp. 1571–1577, 2000. View at Google Scholar · View at Scopus
  37. Y. Ohyagi, Y. Tsuruta, K. Motomura et al., “Intraneuronal amyloid β42 enhanced by heating but counteracted by formic acid,” Journal of Neuroscience Methods, vol. 159, no. 1, pp. 134–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Tabira, D. H. Chui, and S. Kuroda, “Significance of intracellular Abeta42 accumulation in Alzheimer's disease,” Front Biosci, vol. 7, pp. a44–49, 2002. View at Google Scholar · View at Scopus
  39. M. Aoki, I. Volkmann, L. O. Tjernberg, B. Winblad, and N. Bogdanovic, “Amyloid β-peptide levels in laser capture microdissected cornu ammonis 1 pyramidal neurons of Alzheimer's brain,” NeuroReport, vol. 19, no. 11, pp. 1085–1089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. A. Bahr, K. B. Hoffman, A. J. Yang, U. S. Hess, C. G. Glabe, and G. Lynch, “Amyloid β protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein,” Journal of Comparative Neurology, vol. 397, no. 1, pp. 139–147, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Glabe, “Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer's disease,” Journal of Molecular Neuroscience, vol. 17, no. 2, pp. 137–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. R. P. Friedrich, K. Tepper, R. Rönicke et al., “Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 1942–1947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. G. M. Murphy, L. S. Forno, L. Higgins, J. M. Scardina, L. F. Eng, and B. Cordell, “Development of a monoclonal antibody specific for the COOH-terminal of β- amyloid 1-42 and its immunohistochemical reactivity in Alzheimer's disease and related disorders,” American Journal of Pathology, vol. 144, no. 5, pp. 1082–1088, 1994. View at Google Scholar · View at Scopus
  44. S. Oddo, A. Caccamo, I. F. Smith, K. N. Green, and F. M. LaFerla, “A dynamic relationship between intracellular and extracellular pools of Aβ,” American Journal of Pathology, vol. 168, no. 1, pp. 184–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. B. L. Martin, G. Schrader-Fischer, J. Busciglio, M. Duke, P. Paganetti, and B. A. Yankner, “Intracellular accumulation of β-amyloid in cells expressing the Swedish mutant amyloid precursor protein,” Journal of Biological Chemistry, vol. 270, no. 45, pp. 26727–26730, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. P. J. Tienari, N. Ida, E. Ikonen et al., “Intracellular and secreted Alzheimer β-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 4125–4130, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. R. S. Turner, N. Suzuki, A. S. C. Chyung, S. G. Younkin, and V. M.-Y. Lee, “Amyloids β40 and β42 are generated intracellularly in cultured human neurons and their secretion increases with maturation,” Journal of Biological Chemistry, vol. 271, no. 15, pp. 8966–8970, 1996. View at Google Scholar
  48. W. Xia, J. Zhang, B. L. Ostaszewski et al., “Presenilin 1 regulates the processing of β-amyloid precursor protein C- terminal fragments and the generation of amyloid β-protein in endoplasmic reticulum and Golgi,” Biochemistry, vol. 37, no. 47, pp. 16465–16471, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Pierrot, P. Ghisdal, A. S. Caumont, and J. N. Octave, “Intraneuronal amyloid-β1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death,” Journal of Neurochemistry, vol. 88, no. 5, pp. 1140–1150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Nathalie and O. Jean-Noël, “Processing of amyloid precursor protein and amyloid peptide neurotoxicity,” Current Alzheimer Research, vol. 5, no. 2, pp. 92–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Soriano, A. S. C. Chyung, X. Chen, G. B. Stokin, V. M. Y. Lee, and E. H. Koo, “Expression of β-amyloid precursor protein-CD3γ chimeras to demonstrate the selective generation of amyloid/α and amyloid β peptides within secretory and endocytic compartments,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32295–32300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Kimura, K. Yanagisawa, K. Terao et al., “Age-related changes of intracellular Aβ in cynomolgus monkey brains,” Neuropathology and Applied Neurobiology, vol. 31, no. 2, pp. 170–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Wild-Bode, T. Yamazaki, A. Capell et al., “Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42,” Journal of Biological Chemistry, vol. 272, no. 26, pp. 16085–16088, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. F. M. LaFerla, J. C. Troncoso, D. K. Strickland, C. H. Kawas, and G. Jay, “Neuronal cell death in Alzheimer's disease correlates with apoE uptake and intracellular Aβ stabilization,” Journal of Clinical Investigation, vol. 100, no. 2, pp. 310–320, 1997. View at Google Scholar · View at Scopus
  55. R. G. Nagele, M. R. D'Andrea, W. J. Anderson, and H. Y. Wang, “Intracellular accumulation of β-amyloid in neurons is facilitated by the α7 nicotinic acetylcholine receptor in Alzheimer's disease,” Neuroscience, vol. 110, no. 2, pp. 199–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Bi, C. M. Gall, J. Zhou, and G. Lynch, “Uptake and pathogenic effects of amyloid beta peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists,” Neuroscience, vol. 112, no. 4, pp. 827–840, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. P. M. Clifford, S. Zarrabi, G. Siu et al., “Aβ peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons,” Brain Research, vol. 1142, no. 1, pp. 223–236, 2007. View at Publisher · View at Google Scholar
  58. A. J. Yang, M. Knauer, D. A. Burdick, and C. Glabe, “Intracellular Aβ1–42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells,” Journal of Biological Chemistry, vol. 270, no. 24, pp. 14786–14792, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. A. J. Yang, D. Chandswangbhuvana, T. Shu, A. Henschen, and C. G. Glabe, “Intracellular accumulation of insoluble, newly synthesized Aβn-42 in amyloid precursor protein-transfected cells that have been treated with Aβ1–42,” Journal of Biological Chemistry, vol. 274, no. 29, pp. 20650–20656, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Tampellini, N. Rahman, E. F. Gallo et al., “Synaptic activity reduces intraneuronal Aβ, promotes APP transport to synapses, and protects against Aβ-related synaptic alterations,” Journal of Neuroscience, vol. 29, no. 31, pp. 9704–9713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. E. M. Snyder, Y. Nong, C. G. Almeida et al., “Regulation of NMDA receptor trafficking by amyloid-β,” Nature Neuroscience, vol. 8, no. 8, pp. 1051–1058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Lorenzo, M. Yuan, Z. Zhang et al., “Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease,” Nature Neuroscience, vol. 3, no. 5, pp. 460–464, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. G. M. Shaked, M. P. Kummer, D. C. Lu, V. Galvan, D. E. Bredesen, and E. H. Koo, “Abeta induces cell death by direct interaction with its cognate extracellular domain on APP (APP 597–624),” FASEB Journal, vol. 20, no. 8, pp. 1254–1256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Burdick, J. Kosmoski, M. F. Knauer, and C. G. Glabe, “Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer's amyloid peptide, A β1–42, in differentiated PC12 cells,” Brain Research, vol. 746, no. 1-2, pp. 275–284, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Yu, E. Nwabuisi-Heath, K. Laxton, and M. J. Ladu, “Endocytic pathways mediating oligomeric Aβ42 neurotoxicity,” Molecular Neurodegeneration, vol. 5, no. 1, article 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Saavedra, A. Mohamed, V. Ma, S. Kar, and E. P. De Chaves, “Internalization of β-amyloid peptide by primary neurons in the absence of apolipoprotein E,” Journal of Biological Chemistry, vol. 282, no. 49, pp. 35722–35732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. Z. Qiu, D. K. Strickland, B. T. Hyman, and G. W. Rebeck, “α-macroglobulin enhances the clearance of endogenous soluble β- amyloid peptide via low-density lipoprotein receptor-related protein in cortical neurons,” Journal of Neurochemistry, vol. 73, no. 4, pp. 1393–1398, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Narita, D. M. Holtzman, A. L. Schwartz, and G. Bu, “α-macroglobulin complexes with and mediates the endocytosis of β- amyloid peptide via cell surface low-density lipoprotein receptor-related protein,” Journal of Neurochemistry, vol. 69, no. 5, pp. 1904–1911, 1997. View at Google Scholar · View at Scopus
  69. M. M. M. Wilhelmus, I. Otte-Höller, J. J. J. van Triel et al., “Lipoprotein receptor-related protein-1 mediates amyloid-β-mediated cell death of cerebrovascular cells,” American Journal of Pathology, vol. 171, no. 6, pp. 1989–1999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Ida, C. L. Masters, and K. Beyreuther, “Rapid cellular uptake of Alzheimer amyloid βA4 peptide by cultured human neuroblastoma cells,” FEBS Letters, vol. 394, no. 2, pp. 174–178, 1996. View at Publisher · View at Google Scholar · View at Scopus
  71. X. Hu, S. L. Crick, G. Bu, C. Frieden, R. V. Pappu, and J. M. Lee, “Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20324–20329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. D. E. Kang, C. U. Pietrzik, L. Baum et al., “Modulation of amyloid β-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway,” Journal of Clinical Investigation, vol. 106, no. 9, pp. 1159–1166, 2000. View at Google Scholar · View at Scopus
  73. S. Mayor and R. E. Pagano, “Pathways of clathrin-independent endocytosis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 8, pp. 603–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. G. J. Doherty and H. T. McMahon, “Mechanisms of endocytosis,” Annual Review of Biochemistry, vol. 78, pp. 857–902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Kumari, S. Mg, and S. Mayor, “Endocytosis unplugged: multiple ways to enter the cell,” Cell Research, vol. 20, no. 3, pp. 256–275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. E. P. de Chaves and V. Narayanaswami, “Apolipoprotein E and cholesterol in aging and disease in the brain,” Future Lipidology, vol. 3, no. 5, pp. 505–530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Kim, J. M. Basak, and D. M. Holtzman, “The role of apolipoprotein E in Alzheimer's disease,” Neuron, vol. 63, no. 3, pp. 287–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Bu, “Apolipoprotein e and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy,” Nature Reviews Neuroscience, vol. 10, no. 5, pp. 333–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Z. Christensen, T. Schneider-Axmann, P. J. Lucassen, T. A. Bayer, and O. Wirths, “Accumulation of intraneuronal Aβ correlates with ApoE4 genotype,” Acta Neuropathologica, vol. 119, no. 5, pp. 555–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. S. H. Han, C. Hulette, A. M. Saunders et al., “Apolipoprotein E is present in hippocampal neurons without neurofibrillary tangles in Alzheimer's disease and in age-matched controls,” Experimental Neurology, vol. 128, no. 1, pp. 13–26, 1994. View at Publisher · View at Google Scholar · View at Scopus
  81. S. H. Han, G. Einstein, K. H. Weisgraber et al., “Apolipoprotein E is localized to the cytoplasm of human cortical neurons: a light and electron microscopic study,” Journal of Neuropathology and Experimental Neurology, vol. 53, no. 5, pp. 535–544, 1994. View at Google Scholar · View at Scopus
  82. C. V. Zerbinatti, S. E. Wahrle, H. Kim et al., “Apolipoprotein E and low density lipoprotein receptor-related protein facilitate intraneuronal Aβ42 accumulation in amyloid model mice,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 36180–36186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Van Uden, M. Mallory, I. Veinbergs, M. Alford, E. Rockenstein, and E. Masliah, “Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein,” Journal of Neuroscience, vol. 22, no. 21, pp. 9298–9304, 2002. View at Google Scholar · View at Scopus
  84. K. H. Gylys, J. A. Fein, A. M. Tan, and G. M. Cole, “Apolipoprotein E enhances uptake of soluble but not aggregated amyloid-β protein into synaptic terminals,” Journal of Neurochemistry, vol. 84, no. 6, pp. 1442–1451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Yamada, T. Hashimoto, C. Yabuki et al., “The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid β peptides in an in vitro model of the blood-brain barrier cells,” Journal of Biological Chemistry, vol. 283, no. 50, pp. 34554–34562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Yamauchi, M. Tozuka, H. Hidaka, T. Nakabayashi, M. Sugano, and T. Katsuyama, “Isoform-specific effect of apolipoprotein E on endocytosis of β-amyloid in cultures of neuroblastoma cells,” Annals of Clinical and Laboratory Science, vol. 32, no. 1, pp. 65–74, 2002. View at Google Scholar · View at Scopus
  87. R. Deane, A. Sagare, K. Hamm et al., “apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain,” Journal of Clinical Investigation, vol. 118, no. 12, pp. 4002–4013, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. U. Beffert, N. Aumont, D. Dea, S. Lussier-Cacan, J. Davignon, and J. Poirier, “β-amyloid peptides increase the binding and internalization of apolipoprotein E to hippocampal neurons,” Journal of Neurochemistry, vol. 70, no. 4, pp. 1458–1466, 1998. View at Google Scholar · View at Scopus
  89. D. S. Yang, D. H. Small, U. Seydel et al., “Apolipoprotein E promotes the binding and uptake of β-amyloid into Chinese hamster ovary cells in an isoform-specific manner,” Neuroscience, vol. 90, no. 4, pp. 1217–1226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. U. Beffert, N. Aumont, D. Dea, S. Lussier-Cacan, J. Davignon, and J. Poirier, “Apolipoprotein E isoform-specific reduction of extracellular amyloid in neuronal cultures,” Molecular Brain Research, vol. 68, no. 1-2, pp. 181–185, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. B. V. Zlokovic, R. Deane, A. P. Sagare, R. D. Bell, and E. A. Winkler, “Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain,” Journal of Neurochemistry, vol. 115, no. 5, pp. 1077–1089, 2010. View at Publisher · View at Google Scholar
  92. I. Dafnis, E. Stratikos, A. Tzinia, E. C. Tsilibary, V. I. Zannis, and A. Chroni, “An apolipoprotein E4 fragment can promote intracellular accumulation of amyloid peptide beta 42,” Journal of Neurochemistry, vol. 115, no. 4, pp. 873–884, 2010. View at Publisher · View at Google Scholar
  93. B. P. Head and P. A. Insel, “Do caveolins regulate cells by actions outside of caveolae?” Trends in Cell Biology, vol. 17, no. 2, pp. 51–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Kirkham and R. G. Parton, “Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers,” Biochimica et Biophysica Acta, vol. 1745, no. 3, pp. 273–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. M. P. Burns and G. W. Rebeck, “Intracellular cholesterol homeostasis and amyloid precursor protein processing,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 853–859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Fantini and N. Yahi, “Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases,” Expert Reviews in Molecular Medicine, vol. 12, article e27, 2010. View at Publisher · View at Google Scholar
  97. K. Matsuzaki, K. Kato, and K. Yanagisawa, “Aβ polymerization through interaction with membrane gangliosides,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 868–877, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Arispe and M. Doh, “Plasma membrane cholesterol controls the cytotoxicity of Alzheimer's disease AβP (1–40) and (1–42) peptides,” FASEB Journal, vol. 16, no. 12, pp. 1526–1536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Wakabayashi and K. Matsuzaki, “Formation of amyloids by Aβ-(1–42) on NGF-differentiated PC12 cells: roles of gangliosides and cholesterol,” Journal of Molecular Biology, vol. 371, no. 4, pp. 924–933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. C. M. Yip, E. A. Elton, A. A. Darabie, M. R. Morrison, and J. Mclaurin, “Cholesterol, a modulator of membrane-associated Aβ-fibrillogenesis and neurotoxicity,” Journal of Molecular Biology, vol. 311, no. 4, pp. 723–734, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. E. I. Posse de Chaves, M. Bussière, D. E. Vance, R. B. Campenot, and J. E. Vance, “Elevation of ceramide within distal neurites inhibits neurite growth in cultured rat sympathetic neurons,” Journal of Biological Chemistry, vol. 272, no. 5, pp. 3028–3035, 1997. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Oddo and F. M. LaFerla, “The role of nicotinic acetylcholine receptors in Alzheimer's disease,” Journal of Physiology Paris, vol. 99, no. 2-3, pp. 172–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. S. D. Buckingham, A. K. Jones, L. A. Brown, and D. B. Sattelle, “Nicotinic acetylcholine receptor signalling: roles in alzheimer's disease and amyloid neuroprotection,” Pharmacological Reviews, vol. 61, no. 1, pp. 39–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. P. A. S. John, “Cellular trafficking of nicotinic acetylcholine receptors,” Acta Pharmacologica Sinica, vol. 30, no. 6, pp. 656–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. H.-Y. Wang, D. H. S. Lee, M. R. D'Andrea, P. A. Peterson, R. P. Shank, and A. B. Reitz, “β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology,” Journal of Biological Chemistry, vol. 275, no. 8, pp. 5626–5632, 2000. View at Publisher · View at Google Scholar
  106. H.-Y. Wang, D. H. S. Lee, C. B. Davis, and R. P. Shank, “Amyloid peptide Aβ1-42 binds selectively and with picomolar affinity to α7 nicotinic acetylcholine receptors,” Journal of Neurochemistry, vol. 75, no. 3, pp. 1155–1161, 2000. View at Publisher · View at Google Scholar
  107. H. Y. Wang, K. Bakshi, C. Shen, M. Frankfurt, C. Trocmé-Thibierge, and P. Morain, “S 24795 limits β-amyloid-α7 nicotinic receptor interaction and reduces Alzheimer's disease-like pathologies,” Biological Psychiatry, vol. 67, no. 6, pp. 522–530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. D. H. Small, D. Maksel, M. L. Kerr et al., “The β-amyloid protein of Alzheimer's disease binds to membrane lipids but does not bind to the α7 nicotinic acetylcholine receptor,” Journal of Neurochemistry, vol. 101, no. 6, pp. 1527–1538, 2007. View at Publisher · View at Google Scholar
  109. C. M. Hernandez, R. Kayed, H. Zheng, J. D. Sweatt, and K. T. Dineley, “Loss of α7 nicotinic receptors enhances β-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 30, no. 7, pp. 2442–2453, 2010. View at Publisher · View at Google Scholar
  110. G. Dziewczapolski, C. M. Glogowski, E. Masliah, and S. F. Heinemann, “Deletion of the α7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 29, no. 27, pp. 8805–8815, 2009. View at Publisher · View at Google Scholar
  111. J. J. Miguel-Hidalgo, X. A. Alvarez, R. Cacabelos, and G. Quack, “Neuroprotection by memantine against neurodegeneration induced by β-amyloid(1-40),” Brain Research, vol. 958, no. 1, pp. 210–221, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. T. Harkany, I. Ábrahám, W. Timmerman et al., “β-Amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis,” European Journal of Neuroscience, vol. 12, no. 8, pp. 2735–2745, 2000. View at Publisher · View at Google Scholar
  113. H. Decker, K. Y. Lo, S. M. Unger, S. T. Ferreira, and M. A. Silverman, “Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3β in primary cultured hippocampal neurons,” Journal of Neuroscience, vol. 30, no. 27, pp. 9166–9171, 2010. View at Publisher · View at Google Scholar
  114. M. P. Mattson, B. Cheng, D. Davis, K. Bryant, I. Lieberburg, and R. E. Rydel, “β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity,” Journal of Neuroscience, vol. 12, no. 2, pp. 376–389, 1992. View at Google Scholar · View at Scopus
  115. R. Tremblay, B. Chakravarthy, K. Hewitt et al., “Transient NMDA receptor inactivation provides long-term protection cultured cortical neurons from a variety of death signals,” Journal of Neuroscience, vol. 20, no. 19, pp. 7183–7192, 2000. View at Google Scholar · View at Scopus
  116. M. S. Song, G. Rauw, G. B. Baker, and S. Kar, “Memantine protects rat cortical cultured neurons against β-amyloid-induced toxicity by attenuating tau phosphorylation,” European Journal of Neuroscience, vol. 28, no. 10, pp. 1989–2002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Kurup, Y. Zhang, J. Xu et al., “Aβ-mediated NMDA receptor endocytosis in alzheimer's disease involves ubiquitination of the tyrosine phosphatase STEP61,” Journal of Neuroscience, vol. 30, no. 17, pp. 5948–5957, 2010. View at Publisher · View at Google Scholar
  118. R. Dearie, A. Sagare, and B. V. Zlokovic, “The role of the cell surface LRP and soluble LRP in blood-brain barrier Aβ clearance in Alzheimer's disease,” Current Pharmaceutical Design, vol. 14, no. 16, pp. 1601–1605, 2008. View at Publisher · View at Google Scholar
  119. S. D. Yan, XI. Chen, J. Fu et al., “RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease,” Nature, vol. 382, no. 6593, pp. 685–691, 1996. View at Publisher · View at Google Scholar · View at Scopus
  120. X. Chen, D. G. Walker, A. M. Schmidt, O. Arancio, L. F. Lue, and S. D. Yan, “RAGE: a potential target for Aβ-mediated cellular perturbation in Alzheimer's disease,” Current Molecular Medicine, vol. 7, no. 8, pp. 735–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. L. F. Lue, D. G. Walker, L. Brachova et al., “Involvement of microglial receptor for advanced glycation endproducts (RAGE)in Alzheimer's disease: identification of a cellular activation mechanism,” Experimental Neurology, vol. 171, no. 1, pp. 29–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Takuma, F. Fang, W. Zhang et al., “RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 20021–20026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Ditaranto, T. L. Tekirian, and A. J. Yang, “Lysosomal membrane damage in soluble Aβ-mediated cell death in Alzheimer's disease,” Neurobiology of Disease, vol. 8, no. 1, pp. 19–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. C. G. Almeida, R. H. Takahashi, and G. K. Gouras, “β-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system,” Journal of Neuroscience, vol. 26, no. 16, pp. 4277–4288, 2006. View at Publisher · View at Google Scholar
  125. D. Langui, N. Girardot, K. H. El Hachimi et al., “Subcellular topography of neuronal Aβ peptide in APPxPS1 transgenic mice,” American Journal of Pathology, vol. 165, no. 5, pp. 1465–1477, 2004. View at Google Scholar · View at Scopus
  126. C. Schmitz, B. P. F. Rutten, A. Pielen et al., “Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease,” American Journal of Pathology, vol. 164, no. 4, pp. 1495–1502, 2004. View at Google Scholar · View at Scopus
  127. M. F. Knauer, B. Soreghan, D. Burdick, J. Kosmoski, and C. G. Glabe, “Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/β protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7437–7441, 1992. View at Google Scholar · View at Scopus
  128. R. A. Nixon, “Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases,” Neurobiology of Aging, vol. 26, no. 3, pp. 373–382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. M. E. Guicciardi, M. Leist, and G. J. Gores, “Lysosomes in cell death,” Oncogene, vol. 23, no. 16, pp. 2881–2890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. R. Q. Liu, Q. H. Zhou, S. R. Ji et al., “Membrane localization of β-amyloid 1–42 in lysosomes: a possible mechanism for lysosome labilization,” Journal of Biological Chemistry, vol. 285, no. 26, pp. 19986–19996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. M. D. Kane, R. D. Schwarz, L. S. Pierre et al., “Inhibitors of V-type ATPases, bafilomycin A1 and concanamycin A, protect against β-amyloid-mediated effects on 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) reduction,” Journal of Neurochemistry, vol. 72, no. 5, pp. 1939–1947, 1999. View at Publisher · View at Google Scholar · View at Scopus
  132. Z. S. Ji, K. Müllendorff, I. H. Cheng, R. D. Miranda, Y. Huang, and R. W. Mahley, “Reactivity of apolipoprotein E4 and amyloid β peptide: lysosomal stability and neurodegeneration,” Journal of Biological Chemistry, vol. 281, no. 5, pp. 2683–2692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. K. B. Hoffman, X. Bi, J. T. Pham, and G. Lynch, “β-amyloid increases cathepsin D levels in hippocampus,” Neuroscience Letters, vol. 250, no. 2, pp. 75–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  134. A. M. Cataldo, J. L. Barnett, S. A. Berman et al., “Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system,” Neuron, vol. 14, no. 3, pp. 671–680, 1995. View at Google Scholar · View at Scopus
  135. L. M. Callahan, W. A. Vaules, and P. D. Coleman, “Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 3, pp. 275–287, 1999. View at Google Scholar · View at Scopus
  136. S. D. Ginsberg, S. E. Hemby, V. M. Y. Lee, J. H. Eberwine, and J. Q. Trojanowski, “Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons,” Annals of Neurology, vol. 48, no. 1, pp. 77–87, 2000. View at Publisher · View at Google Scholar · View at Scopus
  137. A. M. Cataldo, J. L. Barnett, C. Pieroni, and R. A. Nixon, “Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased β-amyloidogenesis,” Journal of Neuroscience, vol. 17, no. 16, pp. 6142–6151, 1997. View at Google Scholar
  138. L. W. Jin, I. Maezawa, I. Vincent, and T. Bird, “Intracellular accumulation of amyloidogenic fragments of amyloid-β precursor protein in neurons with niemann-pick type C defects is associated with endosomal abnormalities,” American Journal of Pathology, vol. 164, no. 3, pp. 975–985, 2004. View at Google Scholar · View at Scopus
  139. M. W. Weible and I. A. Hendry, “What is the importance of multivesicular bodies in retrograde axonal transport in vivo?” Journal of Neurobiology, vol. 58, no. 2, pp. 230–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. W. G. Wood, G. P. Eckert, U. Igbavboa, and W. E. Müller, “Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer's disease,” Biochimica et Biophysica Acta, vol. 1610, no. 2, pp. 281–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. J. D. Delcroix, J. Valletta, C. Wu et al., “Trafficking the NGF signal: implications for normal and degenerating neurons,” Progress in Brain Research, vol. 146, pp. 3–23, 2004. View at Google Scholar · View at Scopus
  142. K. Deinhardt, S. Salinas, C. Verastegui et al., “Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway,” Neuron, vol. 52, no. 2, pp. 293–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. E. I. Posse de Chaves, A. E. Rusinol, D. E. Vance, R. B. Campenot, and J. E. Vance, “Role of lipoproteins in the delivery of lipids to axons during axonal regeneration,” Journal of Biological Chemistry, vol. 272, no. 49, pp. 30766–30773, 1997. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Salehi, J. D. Delcroix, and W. C. Mobley, “Traffic at the intersection of neurotrophic factor signaling and neurodegeneration,” Trends in Neurosciences, vol. 26, no. 2, pp. 73–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Salehi, J. D. Delcroix, and D. F. Swaab, “Alzheimer's disease and NGF signaling,” Journal of Neural Transmission, vol. 111, no. 3, pp. 323–345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. W. W. Poon, M. Blurton-Jones, C. H. Tu et al., “β-Amyloid impairs axonal BDNF retrograde trafficking,” Neurobiology of Aging. In press. View at Publisher · View at Google Scholar · View at Scopus
  147. D. J. Katzmann, G. Odorizzi, and S. D. Emr, “Receptor downregulation and multivesicular-body sorting,” Nature Reviews Molecular Cell Biology, vol. 3, no. 12, pp. 893–905, 2002. View at Publisher · View at Google Scholar · View at Scopus
  148. L. Gregori, C. Fuchs, M. E. Figueiredo-Pereira, W. E. van Nostrand, and D. Goldgaber, “Amyloid β-protein inhibits ubiquitin-dependent protein degradation in vitro,” Journal of Biological Chemistry, vol. 270, no. 34, pp. 19702–19708, 1995. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Oh, H. S. Hong, E. Hwang et al., “Amyloid peptide attenuates the proteasome activity in neuronal cells,” Mechanisms of Ageing and Development, vol. 126, no. 12, pp. 1292–1299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. B. P. Tseng, K. N. Green, J. L. Chan, M. Blurton-Jones, and F. M. LaFerla, “Aβ inhibits the proteasome and enhances amyloid and tau accumulation,” Neurobiology of Aging, vol. 29, no. 11, pp. 1607–1618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. G. Pigino, G. Morfini, Y. Atagi et al., “Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5907–5912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. M. E. Harris-White, T. Chu, Z. Baiverde, J. J. Sigel, K. C. Flanders, and S. A. Frautschy, “Effects of transforming growth factor-β (isoforms 1–3) on amyloid-β deposition, inflammation, and cell targeting in organotypic hippocampal slice cultures,” Journal of Neuroscience, vol. 18, no. 24, pp. 10366–10374, 1998. View at Google Scholar
  153. O. Wirths, G. Multhaup, C. Czech et al., “Intraneuronal APP/Aβ trafficking and plaque formation in β-amyloid precursor protein and presenilin-1 transgenic mice,” Brain Pathology, vol. 12, no. 3, pp. 275–286, 2002. View at Google Scholar
  154. M. S. Song, L. Saavedra, and E. I. P. de Chaves, “Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Aβ in distal axons,” Neurobiology of Aging, vol. 27, no. 9, pp. 1224–1238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. P. Picone, R. Carrotta, G. Montana, M. R. Nobile, P. L. San Biagio, and M. Di Carlo, “Aβ oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures,” Biophysical Journal, vol. 96, no. 10, pp. 4200–4211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. S. M. Chafekar, F. Baas, and W. Scheper, “Oligomer-specific Aβ toxicity in cell models is mediated by selective uptake,” Biochimica et Biophysica Acta, vol. 1782, no. 9, pp. 523–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Itagaki, P. L. McGeer, H. Akiyama, S. Zhu, and D. Selkoe, “Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease,” Journal of Neuroimmunology, vol. 24, no. 3, pp. 173–182, 1989. View at Google Scholar · View at Scopus
  158. S. Haga, K. Akai, and T. Ishii, “Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain. An immunohistochemical study using a novel monoclonal antibody,” Acta Neuropathologica, vol. 77, no. 6, pp. 569–575, 1989. View at Google Scholar · View at Scopus
  159. S. Kato, T. Gondo, Y. Hoshii, M. Takahashi, M. Yamada, and T. Ishihara, “Confocal observation of senile plaques in Alzheimer's disease: senile plaque morphology and relationship between senile plaques and astrocytes,” Pathology International, vol. 48, no. 5, pp. 332–340, 1998. View at Google Scholar · View at Scopus
  160. J. Wegiel, K.-C. Wang, M. Tarnawski, and B. Lach, “Microglial cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plaque degradation,” Acta Neuropathologica, vol. 100, no. 4, pp. 356–364, 2000. View at Google Scholar
  161. R. Pihlaja, J. Koistinaho, T. Malm, H. Sikkilä, S. Vainio, and M. Koistinaho, “Transplanted astrocytes internalize deposited β-amyloid peptides in a transgenic mouse model of Alzheimer's disease,” GLIA, vol. 56, no. 2, pp. 154–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Hu, K. T. Akama, G. A. Krafft, B. A. Chromy, and L. J. van Eldik, “Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release,” Brain Research, vol. 785, no. 2, pp. 195–206, 1998. View at Publisher · View at Google Scholar · View at Scopus
  163. R. G. Nagele, M. R. D'Andrea, H. Lee, V. Venkataraman, and H. Y. Wang, “Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains,” Brain Research, vol. 971, no. 2, pp. 197–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. I. Allaman, M. Gavillet, M. Bélanger et al., “Amyloid-β aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability,” Journal of Neuroscience, vol. 30, no. 9, pp. 3326–3338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. H. Akiyama, S. Barger, S. Barnum et al., “Inflammation and Alzheimer's disease,” Neurobiology of Aging, vol. 21, no. 3, pp. 383–421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  166. D. Farfara, V. Lifshitz, and D. Frenkel, “Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease: Alzheimer's Review Series,” Journal of Cellular and Molecular Medicine, vol. 12, no. 3, pp. 762–780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. Y. Kong, L. Ruan, L. Qian, X. Liu, and Y. Le, “Norepinephrine promotes microglia to uptake and degrade amyloid β peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme,” Journal of Neuroscience, vol. 30, no. 35, pp. 11848–11857, 2010. View at Publisher · View at Google Scholar
  168. S. Mandrekar, Q. Jiang, C. Y. D. Lee, J. Koenigsknecht-Talboo, D. M. Holtzman, and G. E. Landreth, “Microglia mediate the clearance of soluble aβ through fluid phase macropinocytosis,” Journal of Neuroscience, vol. 29, no. 13, pp. 4252–4262, 2009. View at Publisher · View at Google Scholar
  169. T. Wyss-Coray, C. Lin, F. Yan et al., “TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice,” Nature Medicine, vol. 7, no. 5, pp. 612–618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Chung, M. I. Brazil, T. T. Soe, and F. R. Maxfield, “Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid β-peptide by microglial cells,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32301–32308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  171. T. Nishimura, K. Ikeda, H. Akiyama et al., “Glial tau-positive structures lack the sequence encoded by exon 3 of the tau protein gene,” Neuroscience Letters, vol. 224, no. 3, pp. 169–172, 1997. View at Publisher · View at Google Scholar
  172. H. Funato, M. Yoshimura, T. Yamazaki et al., “Astrocytes containing amyloid β-protein (Aβ)-positive granules are associated with aβ40-positive diffuse plaques in the aged human brain,” American Journal of Pathology, vol. 152, no. 4, pp. 983–992, 1998. View at Google Scholar
  173. M. A. Kurt, D. C. Davies, and M. Kidd, “β-Amyloid immunoreactivity in astrocytes in Alzheimer's disease brain biopsies: an electron microscope study,” Experimental Neurology, vol. 158, no. 1, pp. 221–228, 1999. View at Publisher · View at Google Scholar
  174. W. Matsunaga, T. Shirokawa, and K. Isobe, “Specific uptake of Aβ1-40 in rat brain occurs in astrocyte, but not in microglia,” Neuroscience Letters, vol. 342, no. 1-2, pp. 129–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  175. J. Wegiel, K. C. Wang, H. Imaki et al., “The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP mice,” Neurobiology of Aging, vol. 22, no. 1, pp. 49–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  176. J. Frackowiak, H. M. Wisniewski, J. Wegiel, G. S. Merz, K. Iqbal, and K. C. Wang, “Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce β-amyloid fibrils,” Acta Neuropathologica, vol. 84, no. 3, pp. 225–233, 1992. View at Google Scholar · View at Scopus
  177. D. M. Paresce, R. N. Ghosh, and F. R. Maxfield, “Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor,” Neuron, vol. 17, no. 3, pp. 553–565, 1996. View at Publisher · View at Google Scholar · View at Scopus
  178. M. Stalder, T. Deller, M. Staufenbiel, and M. Jucker, “3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid,” Neurobiology of Aging, vol. 22, no. 3, pp. 427–434, 2001. View at Publisher · View at Google Scholar · View at Scopus
  179. T. Bolmont, F. Haiss, D. Eicke et al., “Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance,” Journal of Neuroscience, vol. 28, no. 16, pp. 4283–4292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. J. Zhao, L. Paganini, L. Mucke et al., “β-Secretase processing of the β-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes,” Journal of Biological Chemistry, vol. 271, no. 49, pp. 31407–31411, 1996. View at Publisher · View at Google Scholar
  181. M. Bigl, J. Apelt, E. A. Luschekina, C. Lange-Dohna, S. Roßner, and R. Schliebs, “Expression of β-secretase mRNA in transgenic Tg2576 mouse brain with Alzheimer plaque pathology,” Neuroscience Letters, vol. 292, no. 2, pp. 107–110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  182. S. A. Scott, S. A. Johnson, C. Zarow, and L. S. Perlmutter, “Inability to detect β-amyloid protein precursor mRNA in Alzheimer plaque- associated microglia,” Experimental Neurology, vol. 121, no. 1, pp. 113–118, 1993. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Lesné, F. Docagne, C. Gabriel et al., “Transforming growth factor-β1 potentiates amyloid-β generation in astrocytes and in transgenic mice,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 18408–18418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  184. H. S. Hong, E. M. Hwang, H. J. Sim et al., “Interferon γ stimulates β-secretase expression and sAPPβ production in astrocytes,” Biochemical and Biophysical Research Communications, vol. 307, no. 4, pp. 922–927, 2003. View at Publisher · View at Google Scholar
  185. Y. Nadler, A. Alexandrovich, N. Grigoriadis et al., “Increased expression of the γ-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury,” GLIA, vol. 56, no. 5, pp. 552–567, 2008. View at Publisher · View at Google Scholar
  186. M. Koistinaho, S. Lin, X. Wu et al., “Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides,” Nature Medicine, vol. 10, no. 7, pp. 719–726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  187. K. J. Yin, J. R. Cirrito, P. Yan et al., “Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism,” Journal of Neuroscience, vol. 26, no. 43, pp. 10939–10948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  188. M. J. Ladu, J. A. Shah, C. A. Reardon et al., “Apolipoprotein E receptors mediate the effects of β-amyloid on astrocyte cultures,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33974–33980, 2000. View at Publisher · View at Google Scholar · View at Scopus
  189. T. Nuutinen, J. Huuskonen, T. Suuronen, J. Ojala, R. Miettinen, and A. Salminen, “Amyloid-β 1–42 induced endocytosis and clusterin/apoJ protein accumulation in cultured human astrocytes,” Neurochemistry International, vol. 50, no. 3, pp. 540–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. E. Matsubara, C. Soto, S. Governale, B. Frangione, and J. Ghiso, “Apolipoprotein J and Alzheimer's amyloid β solubility,” Biochemical Journal, vol. 316, no. 2, pp. 671–679, 1996. View at Google Scholar · View at Scopus
  191. M. M. Bartl, T. Luckenbach, O. Bergner, O. Ullrich, and C. Koch-Brandt, “Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes,” Experimental Cell Research, vol. 271, no. 1, pp. 130–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  192. H. M. Nielsen, S. D. Mulder, J. A. M. Beliën, R. J. P. Musters, P. Eikelenboom, and R. Veerhuis, “Astrocytic Aβ1–42 uptake is determined by Aβ-aggregation state and the presence of amyloid-associated proteins,” GLIA, vol. 58, no. 10, pp. 1235–1246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. J. Husemann, J. D. Loike, R. Anankov, M. Febbraio, and S. C. Silverstein, “Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system,” GLIA, vol. 40, no. 2, pp. 195–205, 2002. View at Publisher · View at Google Scholar
  194. R. Alarcón, C. Fuenzalida, M. Santibáñez, and R. von Bernhardi, “Expression of scavenger receptors in glial cells: comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound β-amyloid,” Journal of Biological Chemistry, vol. 280, no. 34, pp. 30406–30415, 2005. View at Publisher · View at Google Scholar
  195. T. Wyss-Coray, J. D. Loike, T. C. Brionne et al., “Adult mouse astrocytes degrade amyloid-β in vitro and in situ,” Nature Medicine, vol. 9, no. 4, pp. 453–457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  196. I. Migeotte, D. Communi, and M. Parmentier, “Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses,” Cytokine and Growth Factor Reviews, vol. 17, no. 6, pp. 501–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. L. O. Brandenburg, M. Konrad, C. Wruck, T. Koch, T. Pufe, and R. Lucius, “Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1-42 in glial cells,” Neuroscience, vol. 156, no. 2, pp. 266–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. N. Kimura, Y. Ishii, S. Suzaki, T. Negishi, S. Kyuwa, and Y. Yoshikawa, “Aβ upregulates and colocalizes with LGI3 in cultured rat astrocytes,” Cellular and Molecular Neurobiology, vol. 27, no. 3, pp. 335–350, 2007. View at Publisher · View at Google Scholar
  199. S. Okabayashi and N. Kimura, “Leucine-rich glioma inactivated 3 is involved in amyloid β peptide uptake by astrocytes and endocytosis itself,” NeuroReport, vol. 19, no. 12, pp. 1175–1179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. K. Satoh, M. Hata, and H. Yokota, “A novel member of the leucine-rich repeat superfamily induced in rat astrocytes by β-amyloid,” Biochemical and Biophysical Research Communications, vol. 290, no. 2, pp. 756–762, 2002. View at Publisher · View at Google Scholar
  201. S. G. S. C. Buchanan and N. J. Gay, “Structural and functional diversity in the leucine-rich repeat family of proteins,” Progress in Biophysics and Molecular Biology, vol. 65, no. 1-2, pp. 1–44, 1996. View at Google Scholar · View at Scopus
  202. S. Okabayashi and N. Kimura, “LGI3 interacts with flotillin-1 to mediate APP trafficking and exosome formation,” NeuroReport, vol. 21, no. 9, pp. 606–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. H. M. Nielsen, R. Veerhuis, BO. Holmqvist, and S. Janciauskiene, “Binding and uptake of Aβ1–42 by primary human astrocytes in vitro,” GLIA, vol. 57, no. 9, pp. 978–988, 2009. View at Publisher · View at Google Scholar · View at Scopus
  204. C. Y. D. Lee and G. E. Landreth, “The role of microglia in amyloid clearance from the AD brain,” Journal of Neural Transmission, vol. 117, pp. 949–960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  205. Q. Jiang, C. Y. D. Lee, S. Mandrekar et al., “ApoE promotes the proteolytic degradation of Aβ,” Neuron, vol. 58, no. 5, pp. 681–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  206. J. Koenigsknecht and G. Landreth, “Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism,” Journal of Neuroscience, vol. 24, no. 44, pp. 9838–9846, 2004. View at Publisher · View at Google Scholar
  207. Y. Liu, S. Walter, M. Stagi et al., “LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide,” Brain, vol. 128, no. 8, pp. 1778–1789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  208. K. Chen, P. Iribarren, J. Hu et al., “Activation of toll-like receptor 2 on microglia promotes cell uptake of alzheimer disease-associated amyloid β peptide,” Journal of Biological Chemistry, vol. 281, no. 6, pp. 3651–3659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  209. K. Tahara, H. D. Kim, J. J. Jin, J. A. Maxwell, L. Li, and K. I. Fukuchi, “Role of toll-like receptor signalling in Aβ uptake and clearance,” Brain, vol. 129, no. 11, pp. 3006–3019, 2006. View at Publisher · View at Google Scholar · View at Scopus
  210. M. E. Bamberger, M. E. Harris, D. R. McDonald, J. Husemann, and G. E. Landreth, “A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation,” Journal of Neuroscience, vol. 23, no. 7, pp. 2665–2674, 2003. View at Google Scholar · View at Scopus
  211. E. G. Reed-Geaghan, J. C. Savage, A. G. Hise, and G. E. Landreth, “CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation,” Journal of Neuroscience, vol. 29, no. 38, pp. 11982–11992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. Y. H. Cui, Y. Le, W. Gong et al., “Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells,” Journal of Immunology, vol. 168, no. 1, pp. 434–442, 2002. View at Google Scholar · View at Scopus
  213. J. Koenigsknecht-Talboo and G. E. Landreth, “Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines,” Journal of Neuroscience, vol. 25, no. 36, pp. 8240–8249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  214. J. Rogers, R. Strohmeyer, C. J. Kovelowski, and R. Li, “Microglia and inflammatory mechanisms in the clearance of amyloid β peptide,” GLIA, vol. 40, no. 2, pp. 260–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  215. M. I. Brazil, H. Chung, and F. R. Maxfield, “Effects of incorporation of immunoglobulin G and complement component C1q on uptake and degradation of Alzheimer's disease amyloid fibrils by microglia,” Journal of Biological Chemistry, vol. 275, no. 22, pp. 16941–16947, 2000. View at Publisher · View at Google Scholar · View at Scopus
  216. S. D. Webster, M. D. Galvan, E. Ferran, W. Garzon-Rodriguez, C. G. Glabe, and A. J. Tenner, “Antibody-mediated phagocytosis of the amyloid β-peptide in microglia is differentially modulated by C1q,” Journal of Immunology, vol. 166, no. 12, pp. 7496–7503, 2001. View at Google Scholar · View at Scopus