Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 502386, 15 pages
Research Article

Conjugated Quantum Dots Inhibit the Amyloid β (1–42) Fibrillation Process

11301 Memorial Drive, Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
2MP Biomedicals LLC, 3 Hutton Center, Santa Ana, CA 92707, USA
3Department of Mechanical and Aerospace Engineering, University of California, 4200 Engineering Gateway Building, Irvine, CA 92697-3975, USA
4Department of Physics, Florida International University, Miami, FL 33199, USA
5School of Chemistry, College Green, Trinity College Dublin, Dublin 2, Ireland
6Centre of Research on Advanced Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
7School of Physics, College Green, Trinity College Dublin, Dublin 2, Ireland

Received 18 October 2010; Accepted 15 December 2010

Academic Editor: J. Fantini

Copyright © 2011 Garima Thakur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA) capped CdSe/ZnS quantum dots (QDs) of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloid β (1–42) (Aβ (1–42)) is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT) fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.