Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 539621, 10 pages
http://dx.doi.org/10.4061/2011/539621
Research Article

Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?

1School of Electrical & Electronic Engineering (EEE), Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798
2Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036, India
3Brain Functions Laboratory, Inc., Yokohama 226-8510, Japan
4Laboratoire SIGMA 75231 Paris Cedex 05, ESPCI ParisTech, France
5Center for Neural Science, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791, Republic of Korea
6Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, Republic of Korea
7Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-Shi, Saitama 351-0106, Japan

Received 15 December 2010; Revised 10 February 2011; Accepted 15 February 2011

Academic Editor: Florinda Ferreri

Copyright © 2011 Justin Dauwels et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Mattson, “Pathways towards and away from Alzheimer's disease,” Nature, vol. 430, no. 7000, pp. 631–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. D. Meek, E. K. McKeithan, and G. T. Schumock, “Economic considerations in Alzheimer's disease,” Pharmacotherapy, vol. 18, no. 2, part 2, pp. 68–73, 1998. View at Google Scholar · View at Scopus
  3. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, “Forecasting the global burden of Alzheimer's disease,” Alzheimer's and Dementia, vol. 3, no. 3, pp. 186–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. R. Frank and R. C. Petersen, “Mild cognitive impairment,” Handbook of Clinical Neurology, vol. 89, pp. 217–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. Petersen, “Early diagnosis of Alzheimer's disease: is MCI too late?” Current Alzheimer Research, vol. 6, no. 4, pp. 324–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. Petersen, “Clinical trials for early (pre-dementia) Alzheimer's disease: a case for mild cognitive impairment,” Journal of Nutrition, Health and Aging, vol. 14, no. 4, pp. 304–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Shimokawa, N. Yatomi, S. Anamizu et al., “Influence of deteriorating ability of emotional comprehension on interpersonal behavior in Alzheimer-type dementia,” Brain and Cognition, vol. 47, no. 3, pp. 423–433, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Palmer, A. K. Berger, R. Monastero, B. Winblad, L. Bäckman, and L. Fratiglioni, “Predictors of progression from mild cognitive impairment to Alzheimer disease,” Neurology, vol. 68, no. 19, pp. 1596–1602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. A. Wollen, “Alzheimer's disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners,” Alternative Medicine Review, vol. 15, no. 3, pp. 223–244, 2010. View at Google Scholar
  10. J. Jeong, “EEG dynamics in patients with Alzheimer's disease,” Clinical Neurophysiology, vol. 115, no. 7, pp. 1490–1505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Dauwels, F. Vialatte, and A. Cichocki, “Diagnosis of Alzheimer's disease from EEG signals: where are we standing?” Current Alzheimer Research, vol. 7, no. 6, pp. 487–505, 2010. View at Publisher · View at Google Scholar
  12. P. L. Nunez and R. Srinivasan, Electric Fields of the Brain, Oxford University Press, New York, NY, USA, 2006.
  13. A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE Transactions on Information Theory, vol. IT-22, no. 1, pp. 75–81, 1976. View at Google Scholar · View at Scopus
  14. K. Srinivasan and M. Ramasubba Reddy, “Efficient preprocessing technique for real-time lossless EEG compression,” Electronics Letters, vol. 46, no. 1, pp. 26–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Srinivasan, J. Dauwels, and M. R. Reddy, “A two-dimensional approach for lossless EEG compression,” Biomedical Signal Processing and Control. In press. View at Publisher · View at Google Scholar
  16. R. Hornero, D. Abásolo, J. Escudero, and C. Gómez, “Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1887, pp. 317–336, 2009. View at Publisher · View at Google Scholar
  17. S. G. Mallat, “Theory for multiresolution signal decomposition: the wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into Lifting Steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 245–268, 1998. View at Google Scholar · View at Scopus
  19. M. D. Adams and F. Kossentini, “Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis,” IEEE Transactions on Image Processing, vol. 9, no. 6, pp. 1010–1024, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. A. R. Calderbank, I. Daubechies, W. Sweldens, and B. L. Yeo, “Wavelet transforms that map integers to integers,” Applied and Computational Harmonic Analysis, vol. 5, no. 3, pp. 332–369, 1998. View at Google Scholar · View at Scopus
  21. A. Said and W. Pearlman, “A new, fast and efficient image codec basec on set partitioning in hierarchial trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243–250, 1996. View at Google Scholar
  22. Z. Lu, D. Y. Kim, and W. A. Pearlman, “Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 7, pp. 849–856, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Cichocki, S. L. Shishkin, T. Musha, Z. Leonowicz, T. Asada, and T. Kurachi, “EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease,” Clinical Neurophysiology, vol. 116, no. 3, pp. 729–737, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Musha, T. Asada, F. Yamashita et al., “A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer's disease,” Clinical Neurophysiology, vol. 113, no. 7, pp. 1052–1058, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Vialatte, A. Cichocki, G. Dreyfus, T. Musha, T. M. Rutkowski, and R. Gervais, “Blind source separation and sparse bump modelling of time frequency representation of EEG signals: new tools for early detection of Alzheimer's disease,” in Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, pp. 27–32, 2005. View at Publisher · View at Google Scholar
  26. J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki, “A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG,” NeuroImage, vol. 49, no. 1, pp. 668–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Dauwels, F. Vialatte, C. Latchoumane, J. Jeong, and A. Cichocki, “EEG synchrony analysis for early diagnosis of Alzheimer's disease: a study with several synchrony measures and EEG data sets,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 2224–2227, Minneapolis, Minn, USA, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Hogan, G. R. J. Swanwick, J. Kaiser, M. Rowan, and B. Lawlor, “Memory-related EEG power and coherence reductions in mild Alzheimer's disease,” International Journal of Psychophysiology, vol. 49, no. 2, pp. 147–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. R. M. Chapman, G. H. Nowlis, J. W. McCrary et al., “Brain event-related potentials: diagnosing early-stage Alzheimer's disease,” Neurobiology of Aging, vol. 28, no. 2, pp. 194–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Goh, E. Ifeachor, G. Henderson et al., “Characterisation of EEG at different stages of Alzheimer’s disease (AD),” Clinical Neurophysiology, vol. 117, pp. 138–139, 2006. View at Google Scholar
  31. G. Henderson, E. Ifeachor, N. Hudson et al., “Development and assessment of methods for detecting dementia using the human electroencephalogram,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, Article ID 1658150, pp. 1557–1568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Dauwels, F. Vialatte, T. Weber, and A. Cichocki, “Quantifying statistical interdependence by message passing on graphs-part I: one-dimensional point processes,” Neural computation, vol. 21, no. 8, pp. 2203–2268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Dauwels, F. Vialatte, T. Weber, T. Musha, and A. Cichocki, “Quantifying statistical interdependence by message passing on graphs-part II: multidimensional point processes,” Neural computation, vol. 21, no. 8, pp. 2152–2202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Kaminski and K. J. Blinowska, “A new method of the description of the information flow in the brain structures,” Biological Cybernetics, vol. 65, no. 3, pp. 203–210, 1991. View at Publisher · View at Google Scholar · View at Scopus
  35. C. E. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilit,” Pubblicazioni del R. Instituto Superiore di Scienze Economichee Commerciali di Firenze, vol. 8, pp. 3–62, 1936. View at Google Scholar
  36. R. Duda, P. Hart, and D. Stork, Pattern Classification, Wiley-Interscience, New York, NY, USA, 2000.