Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011 (2011), Article ID 654794, 9 pages
http://dx.doi.org/10.4061/2011/654794
Research Article

Combining Transcranial Magnetic Stimulation and Electroencephalography May Contribute to Assess the Severity of Alzheimer's Disease

1Department of Clinical Neurophysiology, Kuopio University Hospital, POB 1777, 70211 Kuopio, Finland
2Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
3Department of Clinical Radiology, Kuopio University Hospital, 70211 Kuopio, Finland
4Nexstim Ltd, 00510 Helsinki, Finland
5Department of Physiology, Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
6Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland

Received 30 December 2010; Revised 3 March 2011; Accepted 13 March 2011

Academic Editor: Fabio Ferrarelli

Copyright © 2011 Petro Julkunen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. A. Rocca, A. Hofman, C. Brayne et al., “Frequency and distribution of Alzheimer's disease in Europe: a collaborative study of 1980–1990 prevalence findings. The EURODEM-Prevalence Research Group,” Annals of Neurology, vol. 30, no. 3, pp. 381–390, 1991. View at Google Scholar
  2. M. M. Mesulam, E. J. Mufson, A. I. Levey, and B. H. Wainer, “Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey,” Journal of Comparative Neurology, vol. 214, no. 2, pp. 170–197, 1983. View at Google Scholar · View at Scopus
  3. A. Martorana, A. Stefani, M. G. Palmieri et al., “L-dopa modulates motor cortex excitability in Alzheimer's disease patients,” Journal of Neural Transmission, vol. 115, no. 9, pp. 1313–1319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Hardy, D. M. A. Mann, P. Wester, and B. Winblad, “An integrative hypothesis concerning the pathogenesis and progression of Alzheimer's disease,” Neurobiology of Aging, vol. 7, no. 6, pp. 489–502, 1986. View at Google Scholar · View at Scopus
  5. C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease,” Brain, vol. 124, no. 4, pp. 739–756, 2001. View at Google Scholar · View at Scopus
  6. J. L. Price and J. C. Morris, “Tangles and plaques in nondemented aging and 'preclinical' alzheimer's disease,” Annals of Neurology, vol. 45, no. 3, pp. 358–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. R. C. Petersen, G. E. Smith, R. J. Ivnik et al., “Apolipoprotein E status as a predictor of the development of Alzheimer's disease in memory-impaired individuals,” Journal of the American Medical Association, vol. 273, no. 16, pp. 1274–1278, 1995. View at Google Scholar · View at Scopus
  8. J. C. Morris, M. Storandt, J. P. Miller et al., “Mild cognitive impairment represents early-stage Alzheimer disease,” Archives of Neurology, vol. 58, no. 3, pp. 397–405, 2001. View at Google Scholar · View at Scopus
  9. R. C. Petersen, “Mild cognitive impairment: transition between aging and Alzheimer's disease,” Neurologia, vol. 15, no. 3, pp. 93–101, 2000. View at Google Scholar · View at Scopus
  10. J. Y. Chen, Y. Stern, M. Sano, and R. Mayeux, “Cumulative risks of developing extrapyramidal signs, psychosis, or myoclonus in the course of Alzheimer's disease,” Archives of Neurology, vol. 48, no. 11, pp. 1141–1143, 1991. View at Google Scholar · View at Scopus
  11. G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984. View at Google Scholar · View at Scopus
  12. D. S. Knopman, S. T. DeKosky, J. L. Cummings et al., “Practice parameter: diagnosis of dementia (an evidence-based review): report of the quality standards subcommittee of the american academy of neurology,” Neurology, vol. 56, no. 9, pp. 1143–1153, 2001. View at Google Scholar · View at Scopus
  13. R. C. A. Pearson, M. M. Esiri, and R. W. Hiorns, “Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 13, pp. 4531–4534, 1985. View at Google Scholar · View at Scopus
  14. J. Rogers and J. H. Morrison, “Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer's disease,” Journal of Neuroscience, vol. 5, no. 10, pp. 2801–2808, 1985. View at Google Scholar · View at Scopus
  15. G. Alagona, R. Bella, R. Ferri et al., “Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity,” Neuroscience Letters, vol. 314, no. 1-2, pp. 57–60, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. De Carvalho, A. De Mendonça, P. C. Miranda, C. Garcia, and M. De Lourdes Sales Luís, “Magnetic stimulation in Alzheimer's disease,” Journal of Neurology, vol. 244, no. 5, pp. 304–307, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Di Lazzaro, F. Pilato, M. Dileone et al., “In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias,” Neurology, vol. 66, no. 7, pp. 1111–1113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Di Lazzaro, A. Oliviero, P. A. Tonali et al., “Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation,” Neurology, vol. 59, no. 3, pp. 392–397, 2002. View at Google Scholar · View at Scopus
  19. V. Di Lazzaro, A. Oliviero, F. Pilato et al., “Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 4, pp. 555–559, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Martorana, F. Mori, Z. Esposito et al., “Dopamine modulates cholinergic cortical excitability in Alzheimer's disease patients,” Neuropsychopharmacology, vol. 34, no. 10, pp. 2323–2328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Perretti, D. Grossi, N. Fragassi et al., “Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease,” Journal of the Neurological Sciences, vol. 135, no. 1, pp. 31–37, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Di Lazzaro, A. Oliviero, F. Pilato et al., “Neurophysiological predictors of long term response to AChE inhibitors in AD patients,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 8, pp. 1064–1069, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Sakuma, T. Murakami, and K. Nakashima, “Short latency afferent inhibition is not impaired in mild cognitive impairment,” Clinical Neurophysiology, vol. 118, no. 7, pp. 1460–1463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Nardone, J. Bergmann, M. Kronbichler et al., “Abnormal short latency afferent inhibition in early Alzheimer's disease: a transcranial magnetic demonstration,” Journal of Neural Transmission, vol. 115, no. 11, pp. 1557–1562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Di Lazzaro, A. Oliviero, P. Profice et al., “Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex,” Experimental Brain Research, vol. 135, no. 4, pp. 455–461, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Tokimura, V. Di Lazzaro, Y. Tokimura et al., “Short latency inhibition of human hand motor cortex by somatosensory input from the hand,” Journal of Physiology, vol. 523, no. 2, pp. 503–513, 2000. View at Google Scholar · View at Scopus
  27. R. Mariorenzi, F. Zarola, M. D. Caramia, C. Paradiso, and P. M. Rossini, “Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans,” Electroencephalography and Clinical Neurophysiology, vol. 81, no. 2, pp. 90–101, 1991. View at Google Scholar · View at Scopus
  28. M. L. Gilmor, J. D. Erickson, H. Varoqui et al., “Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease,” Journal of Comparative Neurology, vol. 411, no. 4, pp. 693–704, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Salloway, S. Ferris, A. Kluger et al., “Efficacy of donepezil in mild cognitive impairment: a randomized placebo-controlled trial,” Neurology, vol. 63, no. 4, pp. 651–657, 2004. View at Google Scholar · View at Scopus
  30. A. J. Saykin, H. A. Wishart, L. A. Rabin et al., “Cholinergic enhancement of frontal lobe activity in mild cognitive impairment,” Brain, vol. 127, no. 7, pp. 1574–1583, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. E. J. Mufson, S. Y. Ma, J. Dills et al., “Loss of basal forebrain p75 immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease,” Journal of Comparative Neurology, vol. 443, no. 2, pp. 136–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. U. Ziemann, S. Lönnecker, B. J. Steinhoff, and W. Paulus, “Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study,” Annals of Neurology, vol. 40, no. 3, pp. 367–378, 1996. View at Google Scholar · View at Scopus
  33. H. Mäki and R. J. Ilmoniemi, “The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation,” Neuroscience Letters, vol. 478, no. 1, pp. 24–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Raij, J. Karhu, D. Kičić et al., “Parallel input makes the brain run faster,” NeuroImage, vol. 40, no. 4, pp. 1792–1797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Komssi, H. J. Aronen, J. Huttunen et al., “Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation,” Clinical Neurophysiology, vol. 113, no. 2, pp. 175–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Massimini, F. Ferrarelli, R. Huber, S. K. Esser, H. Singh, and G. Tononi, “Neuroscience: breakdown of cortical effective connectivity during sleep,” Science, vol. 309, no. 5744, pp. 2228–2232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Rosanova, A. Casali, V. Bellina, F. Resta, M. Mariotti, and M. Massimini, “Natural frequencies of human corticothalamic circuits,” Journal of Neuroscience, vol. 29, no. 24, pp. 7679–7685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Ferreri, P. Pasqualetti, S. Määttä et al., “Human brain connectivity during single and paired pulse transcranial magnetic stimulation,” NeuroImage, vol. 54, no. 1, pp. 90–102, 2011. View at Publisher · View at Google Scholar
  39. P. Julkunen, A. M. Jauhiainen, S. Westerén-Punnonen et al., “Navigated TMS combined with EEG in mild cognitive impairment and Alzheimer's disease: a pilot study,” Journal of Neuroscience Methods, vol. 172, no. 2, pp. 270–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Bonato, C. Miniussi, and P. M. Rossini, “Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study,” Clinical Neurophysiology, vol. 117, no. 8, pp. 1699–1707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. K. Esser, R. Huber, M. Massimini, M. J. Peterson, F. Ferrarelli, and G. Tononi, “A direct demonstration of cortical LTP in humans: a combined TMS/EEG study,” Brain Research Bulletin, vol. 69, no. 1, pp. 86–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Nikouline, J. Ruohonen, and R. J. Ilmoniemi, “The role of the coil click in TMS assessed with simultaneous EEG,” Clinical Neurophysiology, vol. 110, no. 8, pp. 1325–1328, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Paus, P. K. Sipilä, and A. P. Strafella, “Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study,” Journal of Neurophysiology, vol. 86, no. 4, pp. 1983–1990, 2001. View at Google Scholar
  44. P. Julkunen, L. Säisänen, N. Danner et al., “Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials,” NeuroImage, vol. 44, no. 3, pp. 790–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. P. Hughes, L. Berg, and W. L. Danziger, “A new clinical scale for the staging of dementia,” British Journal of Psychiatry, vol. 140, no. 6, pp. 566–572, 1982. View at Google Scholar · View at Scopus
  46. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “'Mini mental state'. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Gauthier, B. Reisberg, M. Zaudig et al., “Mild cognitive impairment,” Lancet, vol. 367, no. 9518, pp. 1262–1270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Awiszus, “Chapter 2 TMS and threshold hunting,” Supplements to Clinical Neurophysiology, vol. 56, pp. 13–23, 2003. View at Publisher · View at Google Scholar
  49. D. Lehmann and W. Skrandies, “Reference-free identification of components of checkerboard-evoked multichannel potential fields,” Electroencephalography and Clinical Neurophysiology, vol. 48, no. 6, pp. 609–621, 1980. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Berg, J. P. Miller, M. Storandt et al., “Mild senile dementia of the Alzheimer type: 2. Longitudinal assessment,” Annals of Neurology, vol. 23, no. 5, pp. 477–484, 1988. View at Google Scholar · View at Scopus
  51. C. A. Lynch, C. Walsh, A. Blanco et al., “The clinical dementia rating sum of box score in mild dementia,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 1, pp. 40–43, 2006. View at Google Scholar
  52. S. E. O'Bryant, S. C. Waring, C. M. Cullum et al., “Staging dementia using clinical dementia rating scale sum of boxes scores: a Texas Alzheimer's research consortium study,” Archives of Neurology, vol. 65, no. 8, pp. 1091–1095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Litvak, S. Komssi, M. Scherg et al., “Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex,” NeuroImage, vol. 37, no. 1, pp. 56–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Ferreri, F. Pauri, P. Pasqualetti, R. Fini, G. Dal Forno, and P. M. Rossini, “Motor cortex excitability in Alzheimer's disease: a transcranial magnetic stimulation study,” Annals of Neurology, vol. 53, no. 1, pp. 102–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Liepert, K. J. Bar, U. Meske et al., “Motor cortex disinhibition in Alzheimer's disease,” Clinical Neurophysiology, vol. 112, no. 8, pp. 1436–1441, 2001. View at Google Scholar
  56. A. Korchounov, T. V. Ilic, T. Schwinge, and U. Ziemann, “Modification of motor cortical excitability by an acetylcholinesterase inhibitor,” Experimental Brain Research, vol. 164, no. 3, pp. 399–405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Niskanen, P. Julkunen, L. Säisänen, R. Vanninen, P. Karjalainen, and M. Könönen, “Group-level variations in motor representation areas of thenar and anterior tibial muscles: navigated transcranial magnetic stimulation study,” Human Brain Mapping, vol. 31, no. 8, pp. 1272–1280, 2010. View at Publisher · View at Google Scholar