Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 761891, 6 pages
Research Article

Does EEG Montage Influence Alzheimer's Disease Electroclinic Diagnosis?

1Mathematics, Computing and Cognition Center (CMCC), Universidade Federal do ABC (UFABC), Rua Santa Adelia, 166, 09210-170 Santo Andre, SP, Brazil
2Engineering, Modeling and Applied Social Sciences Center (CECS), Universidade Federal do ABC (UFABC), Rua Santa Adelia, 166, 09210-170 Santo Andre, SP, Brazil
3Reference Center of Behavioral Disturbances and Dementia (CEREDIC) and Neurology, Department of Medicine School of University of São Paulo (USP), Rua Arruda Alvim, 206, 05.410-020 São Paulo, SP, Brazil

Received 23 December 2010; Revised 23 February 2011; Accepted 7 March 2011

Academic Editor: Fabrizio Vecchio

Copyright © 2011 L. R. Trambaiolli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


There is not a specific Alzheimer's disease (AD) diagnostic test. AD diagnosis relies on clinical history, neuropsychological, and laboratory tests, neuroimaging and electroencephalography. Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to measure treatment results. Quantitative EEG (qEEG) can be used as a diagnostic tool in selected cases. The aim of this study was to answer if distinct electrode montages have different sensitivity when differentiating controls from AD patients. We analyzed EEG spectral peaks (delta, theta, alpha, beta, and gamma bands), and we compared references (Biauricular, Longitudinal bipolar, Crossed bipolar, Counterpart bipolar, and Cz reference). Support Vector Machines and Logistic Regression classifiers showed Counterpart bipolar montage as the most sensitive electrode combination. Our results suggest that Counterpart bipolar montage is the best choice to study EEG spectral peaks of controls versus AD.