Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011 (2011), Article ID 925073, 8 pages
http://dx.doi.org/10.4061/2011/925073
Research Article

Spectroscopic Characterization of Intermolecular Interaction of Amyloid β Promoted on GM1 Micelles

1Graduate school of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
2Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
3Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
4Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan

Received 13 October 2010; Revised 30 November 2010; Accepted 3 December 2010

Academic Editor: J. Fantini

Copyright © 2011 Maho Yagi-Utsumi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annual Review of Biochemistry, vol. 75, pp. 333–366, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G. B. Irvine, O. M. El-Agnaf, G. M. Shankar, and D. M. Walsh, “Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases,” Molecular Medicine, vol. 14, no. 7-8, pp. 451–464, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Google Scholar · View at Scopus
  4. A. T. Petkova, W. M. Yau, and R. Tycko, “Experimental constraints on quaternary structure in Alzheimer's β-amyloid fibrils,” Biochemistry, vol. 45, no. 2, pp. 498–512, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. K. Matsuzaki, K. Kato, and K. Yanagisawa, “Aβ polymerization through interaction with membrane gangliosides,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 868–877, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. Ariga, M. P. McDonald, and R. K. Yu, “Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease—a review,” Journal of Lipid Research, vol. 49, no. 6, pp. 1157–1175, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. Matsuzaki, “Physicochemical interactions of amyloid β-peptide with lipid bilayers,” Biochimica et Biophysica Acta, vol. 1768, no. 8, pp. 1935–1942, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. N. Yamamoto, T. Matsubara, T. Sato, and K. Yanagisawa, “Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid β-protein fibrillogenesis,” Biochimica et Biophysica Acta, vol. 1778, no. 12, pp. 2717–2726, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. N. Yamamoto, Y. Hirabayashi, M. Amari et al., “Assembly of hereditary amyloid β-protein variants in the presence of favorable gangliosides,” FEBS Letters, vol. 579, no. 10, pp. 2185–2190, 2005. View at Publisher · View at Google Scholar · View at PubMed
  10. S. Kumar-Singh, P. Cras, R. Wang et al., “Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric,” American Journal of Pathology, vol. 161, no. 2, pp. 507–520, 2002. View at Google Scholar
  11. C. L. Schengrund, “Lipid rafts: keys to neurodegeneration,” Brain Research Bulletin, vol. 82, no. 1-2, pp. 7–17, 2010. View at Publisher · View at Google Scholar · View at PubMed
  12. J. Fantini and N. Yahi, “Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases,” Expert Reviews in Molecular Medicine, vol. 12, p. e27, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. M. Vey, S. Pilkuhn, H. Wille et al., “Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14945–14949, 1996. View at Publisher · View at Google Scholar
  14. T. Miura, M. Yoda, N. Takaku, T. Hirose, and H. Takeuchi, “Clustered negative charges on the lipid membrane surface induce β-sheet formation of prion protein fragment 106-126,” Biochemistry, vol. 46, no. 41, pp. 11589–11597, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. M. Utsumi, Y. Yamaguchi, H. Sasakawa, N. Yamamoto, K. Yanagisawa, and K. Kato, “Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters,” Glycoconjugate Journal, vol. 26, no. 8, pp. 999–1006, 2009. View at Publisher · View at Google Scholar · View at PubMed
  16. M. Yagi-Utsumi, T. Kameda, Y. Yamaguchi, and K. Kato, “NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid β,” FEBS Letters, vol. 584, no. 4, pp. 831–836, 2010. View at Publisher · View at Google Scholar · View at PubMed
  17. I. Mikhalyov, A. Olofsson, G. Gröbner, and L. B.Å. Johansson, “Designed fluorescent probes reveal interactions between amyloid-β(1-40) peptides and GM1 gangliosides in micelles and lipid vesicles,” Biophysical Journal, vol. 99, no. 5, pp. 1510–1519, 2010. View at Publisher · View at Google Scholar · View at PubMed
  18. A. Kakio, S. I. Nishimoto, K. Yanagisawa, Y. Kozutsumi, and K. Matsuzaki, “Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-Protein, an endogenous seed for Alzheimer amyloid,” Journal of Biological Chemistry, vol. 276, no. 27, pp. 24985–24990, 2001. View at Publisher · View at Google Scholar · View at PubMed
  19. A. Kakio, S. I. Nishimoto, K. Yanagisawa, Y. Kozutsumi, and K. Matsuzaki, “Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid,” Biochemistry, vol. 41, no. 23, pp. 7385–7390, 2002. View at Publisher · View at Google Scholar
  20. H. Naiki and F. Gejyo, “Kinetic analysis of amyloid fibril formation,” Methods in Enzymology, vol. 309, pp. 305–318, 1999. View at Publisher · View at Google Scholar
  21. N. Ojima, K. Sakai, K. Matsuo et al., “Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation: optical system and on-line performance,” Chemistry Letters, no. 6, pp. 522–523, 2001. View at Google Scholar
  22. K. Matsuo, K. Sakai, Y. Matsushima, T. Fukuyama, and K. Gekko, “Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer,” Analytical Sciences, vol. 19, no. 1, pp. 129–132, 2003. View at Publisher · View at Google Scholar
  23. N. Sreerama and R. W. Woody, “Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set,” Analytical Biochemistry, vol. 287, no. 2, pp. 252–260, 2000. View at Publisher · View at Google Scholar · View at PubMed
  24. K. Matsuo, R. Yonehara, and K. Gekko, “Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” Journal of Biochemistry, vol. 138, no. 1, pp. 79–88, 2005. View at Publisher · View at Google Scholar · View at PubMed
  25. K. Matsuo, R. Yonehara, and K. Gekko, “Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” Journal of Biochemistry, vol. 135, no. 3, pp. 405–411, 2004. View at Publisher · View at Google Scholar
  26. W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983. View at Google Scholar
  27. K. Matsuo, H. Watanabe, and K. Gekko, “Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network,” Proteins, vol. 73, no. 1, pp. 104–112, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. B. A. Wallace and R. W. Janes, “Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics,” Current Opinion in Chemical Biology, vol. 5, no. 5, pp. 567–571, 2001. View at Publisher · View at Google Scholar
  29. G. R. Jones and D. T. Clarke, “Applications of extended ultra-violet circular dichroism spectroscopy in biology and medicine,” Faraday Discussions, vol. 126, pp. 223–236, 2004. View at Google Scholar
  30. M. P. Williamson, YU. Suzuki, N. T. Bourne, and T. Asakura, “Binding of amyloid β-peptide to ganglioside micelles is dependent on histidine-13,” Biochemical Journal, vol. 397, no. 3, pp. 483–490, 2006. View at Publisher · View at Google Scholar · View at PubMed
  31. L. P. Choo-Smith and W. K. Surewicz, “The interaction between Alzheimer amyloid β(1-40) peptide and ganglioside G(M1)-containing membranes,” FEBS Letters, vol. 402, no. 2-3, pp. 95–98, 1997. View at Publisher · View at Google Scholar
  32. J. McLaurin and A. Chakrabartty, “Membrane disruption by Alzheimer β-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity,” Journal of Biological Chemistry, vol. 271, no. 43, pp. 26482–26489, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. M. R. H. Krebs, E. H. C. Bromley, and A. M. Donald, “The binding of thioflavin-T to amyloid fibrils: localisation and implications,” Journal of Structural Biology, vol. 149, no. 1, pp. 30–37, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. C. Rodríguez-Rodríguez, A. Rimola, L. Rodríguez-Santiago et al., “Crystal structure of thioflavin-T and its binding to amyloid fibrils: insights at the molecular level,” Chemical Communications, vol. 46, no. 7, pp. 1156–1158, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. C. Wu, Z. Wang, H. Lei, Y. Duan, M. T. Bowers, and J. E. Shea, “The binding of thioflavin T and its neutral analog BTA-1 to protofibrils of the Alzheimer's disease Aβ1622 peptide probed by molecular dynamics simulations,” Journal of Molecular Biology, vol. 384, no. 3, pp. 718–729, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. S. Chimon, M. A. Shaibat, C. R. Jones, D. C. Calero, B. Aizezi, and Y. Ishii, “Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid,” Nature Structural and Molecular Biology, vol. 14, no. 12, pp. 1157–1164, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. Šachl, I. Mikhalyov, M. Hof, and L. B. A. Johansson, “A comparative study on ganglioside micelles using electronic energy transfer, fluorescence correlation spectroscopy and light scattering techniques,” Physical Chemistry Chemical Physics, vol. 11, no. 21, pp. 4335–4343, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. R. Tycko, “Progress towards a molecular-level structural understanding of amyloid fibrils,” Current Opinion in Structural Biology, vol. 14, no. 1, pp. 96–103, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. Wahlström, L. Hugonin, A. Perálvarez-Marín, J. Jarvet, and A. Gräslund, “Secondary structure conversions of Alzheimer's Aβ(1-40) peptide induced by membrane-mimicking detergents,” FEBS Journal, vol. 275, no. 20, pp. 5117–5128, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. D. J. Tew, S. P. Bottomley, D. P. Smith et al., “Stabilization of neurotoxic soluble β-sheet-rich conformations of the Alzheimer's disease amyloid-β peptide,” Biophysical Journal, vol. 94, no. 7, pp. 2752–2766, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. Jarvet, J. Danielsson, P. Damberg, M. Oleszczuk, and A. Gräslund, “Positioning of the Alzheimer Aβ(1-40) peptide in SDS micelles using NMR and paramagnetic probes,” Journal of Biomolecular NMR, vol. 39, no. 1, pp. 63–72, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. Y. Mao, Z. Shang, Y. Imai et al., “Surface-induced phase separation of a sphingomyelin/cholesterol/ganglioside GM1-planar bilayer on mica surfaces and microdomain molecular conformation that accelerates Aβ oligomerization,” Biochimica et Biophysica Acta, vol. 1798, no. 6, pp. 1090–1099, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. A. Ferraretto, M. Pitto, P. Palestini, and M. Masserini, “Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol,” Biochemistry, vol. 36, no. 30, pp. 9232–9236, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus