Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012, Article ID 947147, 12 pages
http://dx.doi.org/10.1155/2012/947147
Research Article

Silencing of Amyloid Precursor Protein Expression Using a New Engineered Delta Ribozyme

1Département de Psychiatrie-Neurosciences, Faculté de Médecine, Unviersité Laval et Neurosciences CHUL, 2705 Laurier, Québec, QC, Canada G1V 4G2
2RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12th Avenue, Sherbrooke, QC, Canada J1H 5N4

Received 30 May 2011; Accepted 1 November 2011

Academic Editor: Anton P. Porsteinsson

Copyright © 2012 Manel Ben Aissa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Levesque, R. Sherrington, and P. St George-Hyslop, Molecular Genetic of Alzheimer Disease, Elsevier Science, Amsterdam, The Netherlands, 2002.
  2. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Citron, C. B. Eckman, T. S. Diehl et al., “Additive effects of PS1 and APP mutations on secretion of the 42- residue amyloid β-protein,” Neurobiology of Disease, vol. 5, no. 2, pp. 107–116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Citron, D. Westaway, W. Xia et al., “Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice,” Nature Medicine, vol. 3, no. 1, pp. 67–72, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Holtzman, A. M. Fagan, B. Mackey et al., “Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model,” Annals of Neurology, vol. 47, no. 6, pp. 739–747, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Deane, A. Sagare, K. Hamm et al., “apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain,” Journal of Clinical Investigation, vol. 118, no. 12, pp. 4002–4013, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Asif-Ullah, M. Lévesque, G. Robichaud, and J. P. Perreault, “Development of ribozyme-based gene-inactivations; the example of the hepatitis delta virus ribozyme,” Current Gene Therapy, vol. 7, no. 3, pp. 205–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Lévesque, S. Choufani, and J. P. Perreault, “Delta ribozyme benefits from a good stability in vitro that becomes outstanding in vivo,” RNA, vol. 8, no. 4, pp. 464–477, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. J. Bergeron and J. P. Perreault, “Target-dependent on/off switch increases ribozyme fidelity,” Nucleic Acids Research, vol. 33, no. 4, pp. 1240–1248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Bergeron, C. Reymond, and J. P. Perreault, “Functional characterization of the SOFA delta ribozyme,” RNA, vol. 11, no. 12, pp. 1858–1868, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. A. Robichaud, J. P. Perreault, and R. J. Ouellette, “Development of an isoform-specific gene suppression system: the study of the human Pax-5B transcriptional element,” Nucleic Acids Research, vol. 36, no. 14, pp. 4609–4620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Fiola, J. P. Perreault, and B. Cousineau, “Gene targeting in the gram-positive bacterium Lactococcus lactis, using various delta ribozymes,” Applied and Environmental Microbiology, vol. 72, no. 1, pp. 869–879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. V. Lévesque, D. Lévesque, F. P. Brière, and J. P. Perreault, “Investigating a new generation of ribozymes in order to target HCV,” PLoS ONE, vol. 5, no. 3, Article ID e9627, 2010. View at Publisher · View at Google Scholar
  14. C. Reymond, M. Bisaillon, and J. P. Perreault, “Monitoring of an RNA multistep folding pathway by isothermal titration calorimetry,” Biophysical Journal, vol. 96, no. 1, pp. 132–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. J. Bergeron and J. P. Perreault, “Development and comparison of procedures for the selection of delta ribozyme cleavage sites within the hepatitis B virus,” Nucleic Acids Research, vol. 30, no. 21, pp. 4682–4691, 2002. View at Google Scholar · View at Scopus
  16. S. S. Hébert, V. Bourdages, C. Godin, M. Ferland, M. Carreau, and G. Lévesque, “Presenilin-1 interacts directly with the β-site amyloid protein precursor cleaving enzyme (BACE1),” Neurobiology of Disease, vol. 13, no. 3, pp. 238–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Yu, D. B. Pecchia, S. L. Kingsley, J. E. Heckman, and J. M. Burke, “Cleavage of highly structured viral RNA molecules by combinatorial libraries of hairpin ribozymes. The most effective ribozymes are not predicted by substrate selection rules,” Journal of Biological Chemistry, vol. 273, no. 36, pp. 23524–23533, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. J. F. Lucier, L. J. Bergeron, F. P. Brière, R. Ouellette, S. A. Elela, and J. P. Perreault, “RiboSubstrates: a web application addressing the cleavage specificities of ribozymes in designated genomes,” BMC Bioinformatics, vol. 7, article 480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. A. Higgins, D. A. Lewis, S. Bahmanyar et al., “Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 4, pp. 1297–1301, 1988. View at Google Scholar · View at Scopus
  20. R. D. Moir and R. E. Tanzi, “LRP-mediated clearance of Aβ is inhibited by KPI-containing isoforms of APP,” Current Alzheimer Research, vol. 2, no. 2, pp. 269–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Reymond, J. D. Beaudoin, and J. P. Perreault, “Modulating RNA structure and catalysis: lessons from small cleaving ribozymes,” Cellular and Molecular Life Sciences, vol. 66, no. 24, pp. 3937–3950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Huang and R. J. Maraia, “Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human,” Nucleic Acids Research, vol. 29, no. 13, pp. 2675–2690, 2001. View at Google Scholar · View at Scopus
  23. A. L. Jackson and P. S. Linsley, “Noise amidst the silence: off-target effects of siRNAs?” Trends in Genetics, vol. 20, no. 11, pp. 521–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Lin, X. Ruan, M. G. Anderson et al., “siRNA-mediated off-target gene silencing triggered by a 7 nt complementation,” Nucleic Acids Research, vol. 33, no. 14, pp. 4527–4535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. V. A. Alvarez, D. A. Ridenour, and B. L. Sabatini, “Retraction of synapses and dendritic spines induced by off-target effects of RNA interference,” Journal of Neuroscience, vol. 26, no. 30, pp. 7820–7825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. D. Judge, V. Sood, J. R. Shaw, D. Fang, K. McClintock, and I. MacLachlan, “Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA,” Nature Biotechnology, vol. 23, no. 4, pp. 457–462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Laitala-Leinonen, “Update on the development of microRNA and siRNA molecules as regulators of cell physiology,” Recent Patents on DNA and Gene Sequences, vol. 4, no. 2, pp. 113–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. I. H. Shih and M. D. Been, “Catalytic strategies of the hepatitis delta virus ribozymes,” Annual Review of Biochemistry, vol. 71, pp. 887–917, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Bergeron, J. Ouellet, and J. P. Perreault, “Ribozyme-based gene-inactivation systems require a fine comprehension of their substrate specificities; the case of delta ribozyme,” Current Medicinal Chemistry, vol. 10, no. 23, pp. 2589–2597, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Scherer and J. J. Rossi, “Approaches for the sequence-specific knockdown of mRNA,” Nature Biotechnology, vol. 21, no. 12, pp. 1457–1465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Salehi-Ashtiani, A. Lupták, A. Litovchick, and J. W. Szostak, “A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene,” Science, vol. 313, no. 5794, pp. 1788–1792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. W. J. Netzer, C. Powell, Y. Nong et al., “Lowering beta-amyloid levels rescues learning and memory in a Down syndrome mouse model,” PloS one, vol. 5, no. 6, p. e10943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Wilcock, N. Gharkholonarehe, W. E. Van Nostrand, J. Davis, M. P. Vitek, and C. A. Colton, “Amyloid reduction by amyloid-β vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer's disease,” Journal of Neuroscience, vol. 29, no. 25, pp. 7957–7965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. S. Aisen, S. Gauthier, B. Vellas et al., “Alzhemed: a potential treatment for Alzheimer's disease,” Current Alzheimer Research, vol. 4, no. 4, pp. 473–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Janus, J. Pearson, J. McLaurin et al., “Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease,” Nature, vol. 408, no. 6815, pp. 979–982, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. McLaurin, R. Cecal, M. E. Kierstead et al., “Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4-10 and inhibit cytotoxicity and fibrillogenesis,” Nature Medicine, vol. 8, no. 11, pp. 1263–1269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Boche, N. Denham, C. Holmes, and J. A. R. Nicoll, “Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer's disease pathogenesis,” Acta Neuropathologica, vol. 120, no. 3, pp. 369–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Wang, L. Song, F. Laird, P. C. Wong, and H. K. Lee, “BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus,” Journal of Neuroscience, vol. 28, no. 35, pp. 8677–8681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. V. Savonenko, T. Melnikova, F. M. Laird, K. A. Stewart, D. L. Price, and P. C. Wong, “Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5585–5590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. F. M. Laird, H. Cai, A. V. Savonenko et al., “BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions,” Journal of Neuroscience, vol. 25, no. 50, pp. 11693–11709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Willem, A. N. Garratt, B. Novak et al., “Control of peripheral nerve myelination by the β-secretase BACE1,” Science, vol. 314, no. 5799, pp. 664–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Hu, C. W. Hicks, W. He et al., “Bace1 modulates myelination in the central and peripheral nervous system,” Nature Neuroscience, vol. 9, no. 12, pp. 1520–1525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Y. Kim, B. W. Carey, H. Wang et al., “BACE1 regulates voltage-gated sodium channels and neuronal activity,” Nature Cell Biology, vol. 9, no. 7, pp. 755–764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Zhu, Z. Y. Sun, Y. Ye et al., “Discovery of cyclic acylguanidines as highly potent and selective β-site amyloid cleaving enzyme (BACE) inhibitors: part I—inhibitor design and validation,” Journal of Medicinal Chemistry, vol. 53, no. 3, pp. 951–965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. W. Klaver, M. C. J. Wilce, H. Cui et al., “Is BACE1 a suitable therapeutic target for the treatment of Alzheimer's disease? Current strategies and future directions,” Biological Chemistry, vol. 391, no. 8, pp. 849–859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. B. P. Imbimbo and I. Peretto, “Semagacestat, a γ-secretase inhibitor for the potential treatment of Alzheimer's disease,” Current Opinion in Investigational Drugs, vol. 10, no. 7, pp. 721–730, 2009. View at Google Scholar · View at Scopus
  47. D. B. Henley, P. C. May, R. A. Dean, and E. R. Siemers, “Development of semagacestat (LY450139), a functional γ-secretase inhibitor, for the treatment of Alzheimer's disease,” Expert Opinion on Pharmacotherapy, vol. 10, no. 10, pp. 1657–1664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Extance, “Alzheimer's failure raises questions about disease-modifying strategies,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 749–750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. McConlogue, M. Buttini, J. P. Anderson et al., “Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice,” Journal of Biological Chemistry, vol. 282, no. 36, pp. 26326–26334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. M. Castellano, J. Kim, F. R. Stewart et al., “Human apoE isoforms differentially regulate brain amyloid-β peptide clearance,” Science Translational Medicine, vol. 3, no. 89, article ra57, 2011. View at Publisher · View at Google Scholar
  51. M. Takahashi, H. Miyoshi, I. M. Verma, and F. H. Gage, “Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer,” Journal of Virology, vol. 73, no. 9, pp. 7812–7816, 1999. View at Google Scholar · View at Scopus
  52. A. F. Hottinger, M. Azzouz, N. Deglon, P. Aebischer, and A. D. Zurn, “Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus,” Journal of Neuroscience, vol. 20, no. 15, pp. 5587–5593, 2000. View at Google Scholar · View at Scopus
  53. Z. Lai and R. O. Brady, “Gene transfer into the central nervous system in vivo using a recombinanat lentivirus vector,” Journal of Neuroscience Research, vol. 67, no. 3, pp. 363–371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. J. H. Kordower, M. E. Emborg, J. Bloch et al., “Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease,” Science, vol. 290, no. 5492, pp. 767–773, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. B. J. Spencer and I. M. Verma, “Targeted delivery of proteins across the blood-brain barrier,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7594–7599, 2007. View at Publisher · View at Google Scholar · View at Scopus