Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 427178, 8 pages
http://dx.doi.org/10.1155/2012/427178
Research Article

Design and Optimization of an EBG Antenna with an Efficient Electromagnetic Solver

Computer Sciences Department, University of Alcalá, 28871 Alcalá de Henares, Spain

Received 28 June 2011; Revised 3 September 2011; Accepted 15 September 2011

Academic Editor: Ning Yuan

Copyright © 2012 Josefa Gómez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Thèvenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2115–2122, 1999. View at Google Scholar · View at Scopus
  2. G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, “Cylindrical electromagnetic bandgap structures for directive base station antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 3, no. 1, pp. 87–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth,” IET Microwaves, Antennas and Propagation, vol. 1, no. 1, pp. 198–203, 2007. View at Publisher · View at Google Scholar
  4. J.-W. Baik, S.-M. Han, C. Jeong, J. Jeong, and Y. S. Kim, “Compact ultra-wideband bandpass filter with EBG structure,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 10, Article ID 4639557, pp. 671–673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Rahmat-Samii, “The Marvels of Electromagnetic Band Gap (EBG) Structures,” Applied Computational Electromagnetics Society Journal, vol. 18, no. 3, pp. 1–10, 2003. View at Google Scholar · View at Scopus
  6. G. V. Trentini, “Partially reflecting sheet arrays,” IRE Transactions on Antennas and Propagation, vol. 4, pp. 666–671, 1956. View at Google Scholar
  7. C. Armenean, E. Perrin, M. Armenean, O. Beuf, F. Pilleul, and H. Saint-Jalmes, “RF induced temperature elevation near metallic wires in clinical magnetic resonance imaging,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 501–504, September 2003. View at Scopus
  8. I. González, E. García, F. S. De Adana, and M. F. Cátedra, “Monurbs: a parallelized fast multipole multilevel code for analyzing complex bodies modeled by NURBS surfaces,” Applied Computational Electromagnetics Society Journal, vol. 23, no. 2, pp. 134–142, 2008. View at Google Scholar · View at Scopus
  9. R. F. Harrington, Field Computation by Moment Methods, Macmillan, New York, NY, USA, 1968.
  10. W. C. Chew, J. Jin, E. Michielssen, and J. Song, Eds., Fast and Efficient Algorithms in Computational Electromagnetics, Artech-House, 2001.
  11. U. Jakobus and F. M. Landstorfer, “Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 2, pp. 162–169, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Delgado, F. Cátedra, I. González, J. Gómez, and A. Tayebi, “Numerical approach for the fast analysis of radiation patterns of antennas in complex environments,” in Proceedings of the Final Program and Book of Abstracts—International Workshop on Antenna Technology: Small Antennas, Innovative Structures and Materials (iWAT '10), pp. 1–4, 2010. View at Publisher · View at Google Scholar
  13. http://www.mcs.anl.gov/research/projects/mpi/.
  14. P. M. Pardalos and M. G. C. Resende, Handbook of Applied Optimization, Oxford University Press, 2002.
  15. E.K. P. Chong and S. H. Zak, An Introduction to Optimization, John Wiley & Sons, NJ, USA, 2008.