Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2012, Article ID 298623, 9 pages
http://dx.doi.org/10.1155/2012/298623
Review Article

The Hedgehog Pathway Conditions the Bone Microenvironment for Osteolytic Metastasis of Breast Cancer

Department of Oncologic Sciences, USA Mitchell Cancer Institute, Mobile, AL 36608, USA

Received 8 July 2011; Revised 6 September 2011; Accepted 8 September 2011

Academic Editor: Douglas R. Hurst

Copyright © 2012 Shamik Das et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Weigelt, J. L. Peterse, and L. J. Van't Veer, “Breast cancer metastasis: markers and models,” Nature Reviews Cancer, vol. 5, no. 8, pp. 591–602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Kraljevic Pavelic, M. Sedic, H. Bosnjak, S. Spaventi, and K. Pavelic, “Metastasis: new perspectives on an old problem,” Molecular Cancer, vol. 10, article 22, 2011. View at Publisher · View at Google Scholar
  3. C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science, vol. 331, no. 6024, pp. 1559–1564, 2011. View at Publisher · View at Google Scholar
  4. P. A. Beachy, S. S. Karhadkar, and D. M. Berman, “Mending and malignancy,” Nature, vol. 431, no. 7007, p. 402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. W. Ingham and A. P. McMahon, “Hedgehog signaling in animal development: paradigms and principles,” Genes and Development, vol. 15, no. 23, pp. 3059–3087, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ruiz i Altaba, C. Mas, and B. Stecca, “The Gli code: an information nexus regulating cell fate, stemness and cancer,” Trends in Cell Biology, vol. 17, no. 9, pp. 438–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Murone, A. Rosenthal, and F. J. De Sauvage, “Sonic hedgehog signaling by the patched-smoothened receptor complex,” Current Biology, vol. 9, no. 2, pp. 76–84, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. K. C. Corbit, P. Aanstad, V. Singla, A. R. Norman, D. Y. R. Stainier, and J. F. Reiter, “Vertebrate Smoothened functions at the primary cilium,” Nature, vol. 437, no. 7061, pp. 1018–1021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. Lipinski, J. J. Gipp, J. Zhang, J. D. Doles, and W. Bushman, “Unique and complimentary activities of the Gli transcription factors in Hedgehog signaling,” Experimental Cell Research, vol. 312, no. 11, pp. 1925–1938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. W. Yoon, Y. Kita, D. J. Frank et al., “Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation,” Journal of Biological Chemistry, vol. 277, no. 7, pp. 5548–5555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Odenthal, F. J. M. Van Eeden, P. Haffter, P. W. Ingham, and C. Nüsslein-Volhard, “Two distinct cell populations in the floor plate of the Zebrafish are induced by different pathways,” Developmental Biology, vol. 219, no. 2, pp. 350–363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Roelink, A. Augsburger, J. Heemskerk et al., “Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord,” Cell, vol. 76, no. 4, pp. 761–775, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. P. W. Ingham, “Transducing Hedgehog: the story so far,” EMBO Journal, vol. 17, no. 13, pp. 3505–3511, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. M. P. Di Magliano and M. Hebrok, “Hedgehog signalling in cancer formation and maintenance,” Nature Reviews Cancer, vol. 3, no. 12, pp. 903–911, 2003. View at Google Scholar · View at Scopus
  15. J. Cayuso, F. Ulloa, B. Cox, J. Briscoe, and E. Marti, “The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity,” Development, vol. 133, no. 3, pp. 517–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Scales and F. J. de Sauvage, “Mechanisms of Hedgehog pathway activation in cancer and implications for therapy,” Trends in Pharmacological Sciences, vol. 30, no. 6, pp. 303–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ahn and A. L. Joyner, “In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog,” Nature, vol. 437, no. 7060, pp. 894–897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. J. Lavine, A. Kovacs, and D. M. Ornitz, “Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice,” Journal of Clinical Investigation, vol. 118, no. 7, pp. 2404–2414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Das, L. G. Harris, B. J. Metge et al., “The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin,” Journal of Biological Chemistry, vol. 284, no. 34, pp. 22888–22897, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Stecca, C. Mas, V. Clement et al., “Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5895–5900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kawahira, D. W. Scheel, S. B. Smith, M. S. German, and M. Hebrok, “Hedgehog signaling regulates expansion of pancreatic epithelial cells,” Developmental Biology, vol. 280, no. 1, pp. 111–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kubo, M. Nakamura, A. Tasaki et al., “Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer,” Cancer Research, vol. 64, no. 17, pp. 6071–6074, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Li, D. G. Heidt, P. Dalerba et al., “Identification of pancreatic cancer stem cells,” Cancer Research, vol. 67, no. 3, pp. 1030–1037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Katoh and M. Katoh, “Hedgehog signaling pathway and gastrointestinal stem cell signaling network (Review),” International Journal of Molecular Medicine, vol. 18, no. 6, pp. 1019–1023, 2006. View at Google Scholar · View at Scopus
  25. M. Evangelista, H. Tian, and F. J. De Sauvage, “The Hedgehog signaling pathway in cancer,” Clinical Cancer Research, vol. 12, no. 20, pp. 5924–5928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Jiang, N. L. Leong, J. C. Mung, C. Hidaka, and H. H. Lu, “Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP,” Osteoarthritis and Cartilage, vol. 16, no. 1, pp. 70–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Mukherjee, N. Frolova, A. Sadlonova et al., “Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer,” Cancer Biology and Therapy, vol. 5, no. 6, pp. 674–683, 2006. View at Google Scholar · View at Scopus
  28. Y. Xuan and Z. Lin, “Expression of Indian Hedgehog signaling molecules in breast cancer,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 2, pp. 235–240, 2009. View at Google Scholar · View at Scopus
  29. X. Zhang, N. Harrington, R. C. Moraes, M. F. Wu, S. G. Hilsenbeck, and M. T. Lewis, “Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo),” Breast Cancer Research and Treatment, vol. 115, no. 3, pp. 505–521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. K. W. Kinzler, S. H. Bigner, and D. D. Bigner, “Identification of an amplified, highly expressed gene in a human glioma,” Science, vol. 236, no. 4797, pp. 70–73, 1987. View at Google Scholar · View at Scopus
  31. M. R. Gailani and A. E. Bale, “Developmental genes and cancer: role of patched in basal cell carcinoma of the skin,” Journal of the National Cancer Institute, vol. 89, no. 15, pp. 1103–1109, 1997. View at Google Scholar · View at Scopus
  32. J. Xie, M. Murone, S. M. Luoh et al., “Activating Smoothened mutations in sporadic basal-cell carcinoma,” Nature, vol. 391, no. 6662, pp. 90–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. R. H. Zurawel, C. Allen, S. Chiappa et al., “Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma,” Genes Chromosomes and Cancer, vol. 27, no. 1, pp. 44–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Tostar, C. J. Malm, J. M. Meis-Kindblom, L. -G. Kindblom, R. Toftgård, and A. B. Undén, “Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development,” Journal of Pathology, vol. 208, no. 1, pp. 17–25, 2006. View at Publisher · View at Google Scholar
  35. H. Hahn, C. Wicking, P. G. Zaphiropoulos et al., “Mutations of the human homolog of drosophila patched in the nevoid basal cell carcinoma syndrome,” Cell, vol. 85, no. 6, pp. 841–851, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. R. L. Johnson, A. L. Rothman, J. Xie et al., “Human homolog of patched, a candidate gene for the basal cell nevus syndrome,” Science, vol. 272, no. 5268, pp. 1668–1671, 1996. View at Google Scholar · View at Scopus
  37. C. W. Lam, J. Xie, K. F. To et al., “A frequent activated smoothened mutation in sporadic basal cell carcinomas,” Oncogene, vol. 18, no. 3, pp. 833–836, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. S. P. Thayer, M. P. Di Magliano, P. W. Heiser et al., “Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis,” Nature, vol. 425, no. 6960, pp. 851–856, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. N. Watkins, D. M. Berman, S. G. Burkholder, B. Wang, P. A. Beachy, and S. B. Baylin, “Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer,” Nature, vol. 422, no. 6929, pp. 313–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. D. M. Berman, S. S. Karhadkar, A. Maitra et al., “Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours,” Nature, vol. 425, no. 6960, pp. 846–851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Fan, C. V. Pepicelli, C. C. Dibble et al., “Hedgehog signaling promotes prostate xenograft tumor growth,” Endocrinology, vol. 145, no. 8, pp. 3961–3970, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Ma, K. Chen, S. Huang et al., “Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas,” Carcinogenesis, vol. 26, no. 10, pp. 1698–1705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Qualtrough, A. Buda, W. Gaffield, A. C. Williams, and C. Paraskeva, “Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment,” International Journal of Cancer, vol. 110, no. 6, pp. 831–837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. W. T. Cheng, K. Xu, D. Y. Tian, Z. G. Zhang, L. J. Liu, and Y. Chen, “Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells,” International Journal of Oncology, vol. 34, no. 3, pp. 829–836, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Chen, A. Horiuchi, N. Kikuchi et al., “Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation: it's inhibition leads to growth suppression and apoptosis,” Cancer Science, vol. 98, no. 1, pp. 68–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Tian, C. A. Callahan, K. J. Dupree et al., “Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4254–4259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. R. L. Yauch, S. E. Gould, S. J. Scales et al., “A paracrine requirement for hedgehog signalling in cancer,” Nature, vol. 455, no. 7211, pp. 406–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Yamasaki, C. Kameda, R. Xu et al., “Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh,” Cancer Immunology, Immunotherapy, vol. 59, no. 5, pp. 675–686, 2010. View at Publisher · View at Google Scholar
  49. A. Ray, E. Meng, E. Reed, L. A. Shevde, and R. P. Rocconi, “Hedgehog signaling pathway regulates the growth of ovarian cancer spheroid forming cells,” International Journal of Oncology, vol. 39, no. 4, pp. 797–804, 2011. View at Publisher · View at Google Scholar
  50. J. Jiang and C. C. Hui, “Hedgehog signaling in development and cancer,” Developmental Cell, vol. 15, no. 6, pp. 801–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Pola, L. E. Ling, M. Silver et al., “The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors,” Nature Medicine, vol. 7, no. 6, pp. 706–711, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Kanda, Y. Mochizuki, T. Suematsu, Y. Miyata, K. Nomata, and H. Kanetake, “Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase,” Journal of Biological Chemistry, vol. 278, no. 10, pp. 8244–8249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Feldmann, S. Dhara, V. Fendrich et al., “Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers,” Cancer Research, vol. 67, no. 5, pp. 2187–2196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. E. D. Hay, “An overview of epithelio-mesenchymal transformation,” Acta Anatomica, vol. 154, no. 1, pp. 8–20, 1995. View at Google Scholar · View at Scopus
  55. P. Sanchez, A. M. Hernández, B. Stecca et al., “Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 34, pp. 12561–12566, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Zhu, X. Ke, Q. Liu et al., “Recurrence of the D100N mutation in a Chinese family with brachydactyly type A1: evidence for a mutational hot spot in the Indian hedgehog gene,” American Journal of Medical Genetics, Part A, vol. 143, no. 11, pp. 1246–1248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Bellahcène, V. Castronovo, K. U. E. Ogbureke, L. W. Fisher, and N. S. Fedarko, “Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer,” Nature Reviews Cancer, vol. 8, no. 3, pp. 212–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. S. S. McAllister, A. M. Gifford, A. L. Greiner et al., “Systemic endocrine instigation of indolent tumor growth requires osteopontin,” Cell, vol. 133, no. 6, pp. 994–1005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. A. Shevde, S. Das, D. W. Clark, and R. S. Samant, “Osteopontin: an effector and an effect of tumor metastasis,” Current Molecular Medicine, vol. 10, no. 1, pp. 71–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. I. Riker, S. A. Enkemann, O. Fodstad et al., “The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis,” BMC Medical Genomics, vol. 1, article 13, 2008. View at Google Scholar
  61. B. J. Metge, S. Liu, A. I. Riker, O. Fodstad, R. S. Samant, and L. A. Shevde, “Elevated osteopontin levels in metastatic melanoma correlate with epigenetic silencing of breast cancer metastasis suppressor 1,” Oncology, vol. 78, no. 1, pp. 75–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. L. A. Shevde, R. S. Samant, J. C. Paik et al., “Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435,” Clinical and Experimental Metastasis, vol. 23, no. 2, pp. 123–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Psailaa, R. N. Kaplana, E. R. Port, and D. Lydena, “Priming the “soil” for breast cancer metastasis: the pre-metastatic niche,” Breast Disease, vol. 26, no. 1, pp. 65–74, 2006. View at Google Scholar
  64. R. N. Kaplan, S. Rafii, and D. Lyden, “Preparing the "soil": the premetastatic niche,” Cancer Research, vol. 66, no. 23, pp. 11089–11093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. I. Harada and G. A. Rodan, “Control of osteoblast function and regulation of bone mass,” Nature, vol. 423, no. 6937, pp. 349–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. E. H. Burger, J. Klein-Nulend, A. Van der Plas, and P. J. Nijweide, “Function of osteocytes in bone-their role in mechanotransduction,” Journal of Nutrition, vol. 125, no. 7, 1995. View at Google Scholar · View at Scopus
  67. S. L. Teitelbaum and F. P. Ross, “Genetic regulation of osteoclast development and function,” Nature Reviews Genetics, vol. 4, no. 8, pp. 638–649, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. C. M. Edwards and G. R. Mundy, “Eph receptors and ephrin signaling pathways: a role in bone homeostasis,” International Journal of Medical Sciences, vol. 5, no. 5, pp. 263–272, 2008. View at Google Scholar · View at Scopus
  69. M. Harada, A. Shimizu, Y. Nakamura, and R. Nemoto, “Role of the vertebral venous system in metastatic spread of cancer cells to the bone,” Advances in Experimental Medicine and Biology, vol. 324, pp. 83–92, 1992. View at Google Scholar · View at Scopus
  70. A. J. Abeloff, A. S. Lichter, and J. E. Niederhuber, Clinical Oncology, Elsevier Science, 2000.
  71. B. Psaila and D. Lyden, “The metastatic niche: adapting the foreign soil,” Nature Reviews Cancer, vol. 9, no. 4, pp. 285–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. K. M. Bussard, C. V. Gay, and A. M. Mastro, “The bone microenvironment in metastasis; what is special about bone?” Cancer and Metastasis Reviews, vol. 27, no. 1, pp. 41–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. T. A. Guise, K. S. Mohammad, G. Clines et al., “Basic mechanisms responsible for osteolytic and osteoblastic bone metastases,” Clinical Cancer Research, vol. 12, no. 20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Kang, P. M. Siegel, W. Shu et al., “A multigenic program mediating breast cancer metastasis to bone,” Cancer Cell, vol. 3, no. 6, pp. 537–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. J. J. Yin, K. S. Mohammad, S. M. Käkönen et al., “A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 10954–10959, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. G. R. Mundy, “Metastasis to bone: causes, consequences and therapeutic opportunities,” Nature Reviews Cancer, vol. 2, no. 8, pp. 584–593, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. D. A. Kesper, L. Didt-Koziel, and A. Vortkamp, “Gli2 activator function in preosteoblasts is sufficient to mediate Ihh-dependent osteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification,” Developmental Dynamics, vol. 239, no. 6, pp. 1818–1826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Zhao, M. Qiao, S. E. Harris, D. Chen, B. O. Oyajobi, and G. R. Mundy, “The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling,” Molecular and Cellular Biology, vol. 26, no. 16, pp. 6197–6208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Plaisant, C. Fontaine, W. Cousin, N. Rochet, C. Dani, and P. Peraldi, “Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells,” Stem Cells, vol. 27, no. 3, pp. 703–713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. D. McKee and A. Nanci, “Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair,” Microscopy Research and Technique, vol. 33, no. 2, pp. 141–164, 1996. View at Publisher · View at Google Scholar · View at Scopus
  81. H. C. Blair, L. J. Robinson, and M. Zaidi, “Osteoclast signalling pathways,” Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 728–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Yoneda, A. Sasaki, and G. R. Mundy, “Osteolytic bone metastasis in breast cancer,” Breast Cancer Research and Treatment, vol. 32, no. 1, pp. 73–84, 1994. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Das, R. S. Samant, and L. A. Shevde, “Hedgehog signaling induced by breast cancer cells promotes osteoclastogenesis and osteolysis,” Journal of Biological Chemistry, vol. 286, no. 11, pp. 9612–9622, 2011. View at Publisher · View at Google Scholar
  84. J. A. Sterling, B. O. Oyajobi, B. Grubbs et al., “The Hedgehog signaling molecule Gli2 induces parathyroid hormone-related peptide expression and osteolysis in metastatic human breast cancer cells,” Cancer Research, vol. 66, no. 15, pp. 7548–7553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. K. D. Brubaker, L. G. Brown, R. L. Vessella, and E. Corey, “Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment,” BMC Cancer, vol. 6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. R. E. Miller, M. Roudier, J. Jones, A. Armstrong, J. Canon, and W. C. Dougall, “RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 2160–2169, 2008. View at Publisher · View at Google Scholar · View at Scopus