Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2012 (2012), Article ID 670632, 7 pages
http://dx.doi.org/10.1155/2012/670632
Review Article

Bromodomain-Containing Protein 4: A Dynamic Regulator of Breast Cancer Metastasis through Modulation of the Extracellular Matrix

Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Received 27 July 2011; Revised 16 September 2011; Accepted 17 September 2011

Academic Editor: Douglas R. Hurst

Copyright © 2012 Jude Alsarraj and Kent W. Hunter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at PubMed
  2. R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths,” CA Cancer Journal for Clinicians, vol. 61, no. 4, pp. 212–236, 2011. View at Publisher · View at Google Scholar · View at PubMed
  3. R. Heimann, F. Lan, R. McBride, and S. Hellman, “Separating favorable from unfavorable prognostic markers in breast cancer: the role of E-cadherin,” Cancer Research, vol. 60, no. 2, pp. 298–304, 2000. View at Google Scholar
  4. A. C. Ranganathan, A. P. Adam, L. Zhang, and J. A. Aguirre-Ghiso, “Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells?” Cancer Biology and Therapy, vol. 5, no. 7, pp. 729–735, 2006. View at Google Scholar
  5. B. D. Hedley and A. F. Chambers, “Chapter 3 Tumor Dormancy and Metastasis,” Advances in Cancer Research, vol. 102, pp. 67–101, 2009. View at Publisher · View at Google Scholar
  6. P. M. McGowan, J. M. Kirstein, and A. F. Chambers, “Micrometastatic disease and metastatic outgrowth: clinical issues and experimental approaches,” Future Oncology, vol. 5, no. 7, pp. 1083–1098, 2009. View at Publisher · View at Google Scholar · View at PubMed
  7. A. J. Minn, G. P. Gupta, D. Padua et al., “Lung metastasis genes couple breast tumor size and metastatic spread,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 16, pp. 6740–6745, 2007. View at Publisher · View at Google Scholar · View at PubMed
  8. T. Le Voyer, Z. Lu, J. Babb, T. Lifsted, M. Williams, and K. Hunter, “An epistatic interaction controls the latency of a transgene-induced mammary tumor,” Mammalian Genome, vol. 11, no. 10, pp. 883–889, 2000. View at Google Scholar
  9. T. Lifsted, T. Le Voyer, M. Williams et al., “Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression,” International Journal of Cancer, vol. 77, no. 4, pp. 640–644, 1998. View at Publisher · View at Google Scholar
  10. K. W. Hunter, K. W. Broman, T. Le Voyer et al., “Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1,” Cancer Research, vol. 61, no. 24, pp. 8866–8872, 2001. View at Google Scholar
  11. T. Le Voyer, J. Rouse, Z. Lu, T. Lifsted, M. Williams, and K. W. Hunter, “Three loci modify growth of a transgene-induced mammary tumor: suppression of proliferation associated with decreased microvessel density,” Genomics, vol. 74, no. 3, pp. 253–261, 2001. View at Publisher · View at Google Scholar · View at PubMed
  12. Y. G. Park, X. Zhao, F. Lesueur et al., “Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1,” Nature Genetics, vol. 37, no. 10, pp. 1055–1062, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. N. P. S. Crawford, A. Ziogas, D. J. Peel, J. Hess, H. Anton-Culver, and K. W. Hunter, “Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer,” Breast Cancer Research, vol. 8, no. 2, article R16, 2006. View at Publisher · View at Google Scholar · View at PubMed
  14. S. M. Hsieh, R. A. Smith, N. A. Lintell, K. W. Hunter, and L. R. Griffiths, “Polymorphisms of the SIPA1 gene and sporadic breast cancer susceptibility,” BMC Cancer, vol. 9, article 331, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub, “A molecular signature of metastasis in primary solid tumors,” Nature Genetics, vol. 33, no. 1, pp. 49–54, 2003. View at Publisher · View at Google Scholar · View at PubMed
  16. L. J. van't Veer, H. Dai, M. J. van de Vijver et al., “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002. View at Publisher · View at Google Scholar · View at PubMed
  17. M. J. van de Vijver, Y. D. He, L. J. van't Veer et al., “A gene-expression signature as a predictor of survival in breast cancer,” The New England Journal of Medicine, vol. 347, no. 25, pp. 1999–2009, 2002. View at Publisher · View at Google Scholar · View at PubMed
  18. H. Yang, N. Crawford, L. Lukes, R. Finney, M. Lancaster, and K. W. Hunter, “Metastasis predictive signature profiles pre-exist in normal tissues,” Clinical and Experimental Metastasis, vol. 22, no. 7, pp. 593–603, 2005. View at Publisher · View at Google Scholar · View at PubMed
  19. H. Yang, J. Rouse, L. Lukes et al., “Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasis,” Clinical and Experimental Metastasis, vol. 21, no. 8, pp. 719–735, 2005. View at Publisher · View at Google Scholar
  20. C. Chiodoni, M. P. Colombo, and S. Sangaletti, “Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis,” Cancer and Metastasis Reviews, vol. 29, no. 2, pp. 295–307, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. W. G. Stetler-Stevenson, S. Aznavoorian, and L. A. Liotta, “Tumor cell interactions with the extracellular matrix during invasion and metastasis,” Annual Review of Cell Biology, vol. 9, pp. 541–573, 1993. View at Google Scholar
  22. A. Bergamaschi, E. Tagliabue, T. Sørlie et al., “Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome,” Journal of Pathology, vol. 214, no. 3, pp. 357–367, 2008. View at Publisher · View at Google Scholar · View at PubMed
  23. B. Naume, X. Zhao, M. Synnestvedt et al., “Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer,” Molecular Oncology, vol. 1, no. 2, pp. 160–171, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. R. E. Ellsworth, J. Seebach, L. A. Field et al., “A gene expression signature that defines breast cancer metastases,” Clinical and Experimental Metastasis, vol. 26, no. 3, pp. 205–213, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. Y. Feng, B. Sun, X. Li et al., “Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients,” Breast Cancer Research and Treatment, vol. 103, no. 3, pp. 319–329, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Suzuki and D. Tarin, “Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications,” Molecular Oncology, vol. 1, no. 2, pp. 172–180, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. M. Vecchi, S. Confalonieri, P. Nuciforo et al., “Breast cancer metastases are molecularly distinct from their primary tumors,” Oncogene, vol. 27, no. 15, pp. 2148–2158, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. B. L. Eckhardt, B. S. Parker, R. K. van Laar et al., “Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix,” Molecular Cancer Research, vol. 3, no. 1, pp. 1–13, 2005. View at Google Scholar
  29. M. L. Mucenski, B. A. Taylor, N. A. Jenkins, and N. G. Copeland, “AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas,” Molecular and Cellular Biology, vol. 6, no. 12, pp. 4236–4243, 1986. View at Google Scholar
  30. N. P. S. Crawford, R. C. Walker, L. Lukes, J. S. Officewala, R. W. Williams, and K. W. Hunter, “The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival,” Clinical and Experimental Metastasis, vol. 25, no. 4, pp. 357–369, 2008. View at Publisher · View at Google Scholar · View at PubMed
  31. M. Lancaster, J. Rouse, and K. W. Hunter, “Modifiers of mammary tumor progression and metastasis on mouse Chromosomes 7, 9, and 17,” Mammalian Genome, vol. 16, no. 2, pp. 120–126, 2005. View at Publisher · View at Google Scholar
  32. A. Dey, F. Chitsaz, A. Abbasi, T. Misteli, and K. Ozato, “The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8758–8763, 2003. View at Publisher · View at Google Scholar · View at PubMed
  33. T. Maruyama, A. Farina, A. Dey et al., “A mammalian bromodomain protein, Brd4, interacts with replication factor C and inhibits progression to S phase,” Molecular and Cellular Biology, vol. 22, no. 18, pp. 6509–6520, 2002. View at Publisher · View at Google Scholar
  34. S. R. Haynes, C. Dollard, F. Winston, S. Beck, J. Trowsdale, and I. B. Dawid, “The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins,” Nucleic Acids Research, vol. 20, no. 10, article 2603, 1992. View at Google Scholar
  35. F. Jeanmougin, J. M. Wurtz, B. Le Douarin, P. Chambon, and R. Losson, “The bromodomain revisited,” Trends in Biochemical Sciences, vol. 22, no. 5, pp. 151–153, 1997. View at Google Scholar
  36. N. P. S. Crawford, J. Alsarraj, L. Lukes et al., “Bromodomain 4 activation predicts breast cancer survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6380–6385, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. A. Farina, M. Hattori, J. Qin, Y. Nakatani, N. Minato, and K. Ozato, “Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization,” Molecular and Cellular Biology, vol. 24, no. 20, pp. 9059–9069, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. J. Alsarraj, R. C. Walker, J. D. Webster et al., “Deletion of the proline-rich region of the murine metastasis susceptibility gene Brd4 promotes epithelial-to-mesenchymal transition- and stem cell-like conversion,” Cancer Research, vol. 71, no. 8, pp. 3121–3131, 2011. View at Publisher · View at Google Scholar · View at PubMed
  39. M. Itoh, C. M. Nelson, C. A. Myers, and M. J. Bissell, “Rap1 integrates tissue polarity, lumen formation, and tumorigenic potential in human breast epithelial cells,” Cancer Research, vol. 67, no. 10, pp. 4759–4766, 2007. View at Publisher · View at Google Scholar · View at PubMed
  40. S. F. Retta, F. Balzac, and M. Avolio, “Rap1: a turnabout for the crosstalk between cadherins and integrins,” European Journal of Cell Biology, vol. 85, no. 3-4, pp. 283–293, 2006. View at Publisher · View at Google Scholar · View at PubMed
  41. S. Rahman, M. E. Sowa, M. Ottinger et al., “The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3,” Molecular and Cellular Biology, vol. 31, no. 13, pp. 2641–2652, 2011. View at Publisher · View at Google Scholar · View at PubMed
  42. D. A. Bisgrove, T. Mahmoudi, P. Henklein, and E. Verdin, “Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13690–13695, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. P. Damonte, J. P. Gregg, A. D. Borowsky, B. A. Keister, and R. D. Cardiff, “EMT tumorigenesis in the mouse mammary gland,” Laboratory Investigation, vol. 87, no. 12, pp. 1218–1226, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. M. Guarino, B. Rubino, and G. Ballabio, “The role of epithelial-mesenchymal transition in cancer pathology,” Pathology, vol. 39, no. 3, pp. 305–318, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. M. I. Kokkinos, R. Wafai, M. K. Wong, D. F. Newgreen, E. W. Thompson, and M. Waltham, “Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo,” Cells Tissues Organs, vol. 185, no. 1–3, pp. 191–203, 2007. View at Publisher · View at Google Scholar · View at PubMed
  46. J. M. Lee, S. Dedhar, R. Kalluri, and E. W. Thompson, “The epithelial-mesenchymal transition: new insights in signaling, development, and disease,” Journal of Cell Biology, vol. 172, no. 7, pp. 973–981, 2006. View at Publisher · View at Google Scholar · View at PubMed
  47. D. Sarrió, S. M. Rodriguez-Pinilla, D. Hardisson, A. Cano, G. Moreno-Bueno, and J. Palacios, “Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype,” Cancer Research, vol. 68, no. 4, pp. 989–997, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. A. J. Trimboli, K. Fukino, A. De Bruin et al., “Direct evidence for epithelial-mesenchymal transitions in breast cancer,” Cancer Research, vol. 68, no. 3, pp. 937–945, 2008. View at Publisher · View at Google Scholar · View at PubMed
  49. T. Brabletz, A. Jung, S. Reu et al., “Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10356–10361, 2001. View at Publisher · View at Google Scholar · View at PubMed
  50. I. J. Fidler and G. Poste, “The “seed and soil” hypothesis revisited,” The Lancet Oncology, vol. 9, no. 8, p. 808, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. J. P. Their, “Epithelial-mesenchymal transitions in tumor progression,” Nature Reviews Cancer, vol. 2, no. 6, pp. 442–454, 2002. View at Google Scholar
  52. J. Yang and R. A. Weinberg, “Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis,” Developmental Cell, vol. 14, no. 6, pp. 818–829, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. L. Ma, J. Teruya-Feldstein, and R. A. Weinberg, “Tumour invasion and metastasis initiated by microRNA-10b in breast cancer,” Nature, vol. 449, no. 7163, pp. 682–688, 2007. View at Publisher · View at Google Scholar · View at PubMed
  54. T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, and T. Kirchner, “Migrating cancer stem cells—an integrated concept of malignant tumour progression,” Nature Reviews Cancer, vol. 5, no. 9, pp. 744–749, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. S. A. Mani, W. Guo, M. J. Liao et al., “The epithelial-mesenchymal transition generates cells with properties of stem cells,” Cell, vol. 133, no. 4, pp. 704–715, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. C. J. Creighton, J. C. Chang, and J. M. Rosen, “Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at PubMed
  57. M. A. den Bakker, B. H. Beverloo, M. M. van den Heuvel-Eibrink et al., “NUT midline carcinoma of the parotid gland with mesenchymal differentiation,” American Journal of Surgical Pathology, vol. 33, no. 8, pp. 1253–1258, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. C. A. French, I. Miyoshi, J. C. Aster et al., “BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19),” American Journal of Pathology, vol. 159, no. 6, pp. 1987–1992, 2001. View at Google Scholar
  59. C. A. French, C. L. Ramirez, J. Kolmakova et al., “BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells,” Oncogene, vol. 27, no. 15, pp. 2237–2242, 2008. View at Publisher · View at Google Scholar · View at PubMed
  60. N. Haruki, K. S. Kawaguchi, S. Eichenberger et al., “Cloned fusion product from a rare t(15;19)(q13.2;p13.1) inhibit S phase in vitro,” Journal of Medical Genetics, vol. 42, no. 7, pp. 558–564, 2005. View at Publisher · View at Google Scholar · View at PubMed
  61. A. V. Ivshina, J. George, O. Senko et al., “Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer,” Cancer Research, vol. 66, no. 21, pp. 10292–10301, 2006. View at Publisher · View at Google Scholar · View at PubMed
  62. C.-W. Chung, H. Coste, J. H. White et al., “Discovery and characterization of small molecule inhibitors of the BET family bromodomains,” Journal of Medicinal Chemistry, vol. 54, no. 11, pp. 3827–3838, 2011. View at Publisher · View at Google Scholar · View at PubMed
  63. P. Filippakopoulos, J. Qi, S. Picaud et al., “Selective inhibition of BET bromodomains,” Nature, vol. 468, no. 7327, pp. 1067–1073, 2010. View at Publisher · View at Google Scholar · View at PubMed
  64. E. Nicodeme, K. L. Jeffrey, U. Schaefer et al., “Suppression of inflammation by a synthetic histone mimic,” Nature, vol. 468, no. 7327, pp. 1119–1123, 2010. View at Publisher · View at Google Scholar · View at PubMed
  65. J. Zuber, J. Shi, E. Wang et al., “RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia,” Nature. In press. View at Publisher · View at Google Scholar · View at PubMed