Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2012, Article ID 721659, 7 pages
http://dx.doi.org/10.1155/2012/721659
Review Article

The Microenvironmental Effect in the Progression, Metastasis, and Dormancy of Breast Cancer: A Model System within Bone Marrow

Department of Medicine-Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA

Received 19 August 2011; Revised 12 November 2011; Accepted 15 November 2011

Academic Editor: Lalita Shevde

Copyright © 2012 Bobby Y. Reddy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. F. Gertler and J. Condeelis, “Metastasis: tumor cells becoming MENAcing,” Trends in Cell Biology, vol. 21, no. 2, pp. 81–90, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. K. Polyak and R. Kalluri, “The role of the microenvironment in mammary gland development and cancer,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 11, Article ID a003244, 2010. View at Google Scholar
  4. W. Wang, S. Goswami, E. Sahai, J. B. Wyckoff, J. E. Segall, and J. S. Condeelis, “Tumor cells caught in the act of invading: their strategy for enhanced cell motility,” Trends in Cell Biology, vol. 15, no. 3, pp. 138–145, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. Condeelis and J. E. Segall, “Intravital imaging of cell movement in tumours,” Nature Reviews Cancer, vol. 3, no. 12, pp. 921–930, 2003. View at Google Scholar · View at Scopus
  6. J. W. Uhr and K. Pantel, “Controversies in clinical cancer dormancy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12396–12400, 2011. View at Publisher · View at Google Scholar · View at PubMed
  7. J. E. Talmadge, “Clonal selection of metastasis within the life history of a tumor,” Cancer Research, vol. 67, no. 24, pp. 11471–11475, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. L. Mansi, U. Berger, T. McDonnell et al., “The fate of bone marrow micrometastases in patients with primary breast cancer,” Journal of Clinical Oncology, vol. 7, no. 4, pp. 445–449, 1989. View at Google Scholar · View at Scopus
  9. M. Habeck, “Bone-marrow analysis predicts breast-cancer recurrence,” Molecular Medicine Today, vol. 6, no. 7, pp. 256–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Braun, D. Auer, and C. Marth, “The prognostic impact of bone marrow micrometastases in women with breast cancer,” Cancer Investigation, vol. 27, no. 6, pp. 598–603, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. S. Oh, A. Moharita, J. G. Potian et al., “Bone marrow stroma influences transforming growth factor-β production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells,” Cancer Research, vol. 64, no. 17, pp. 6327–6336, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. H. Ramkissoon, P. S. Patel, M. Taborga, and P. Rameshwar, “Nuclear factor-κB is central to the expression of truncated neurokinin-1 receptor in breast cancer: implication for breast cancer cell quiescence within bone marrow stroma,” Cancer Research, vol. 67, no. 4, pp. 1653–1659, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. G. Rao, P. S. Patel, S. P. Idler et al., “Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression,” Cancer Research, vol. 64, no. 8, pp. 2874–2881, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Y. Reddy, S. J. Greco, P. S. Patel, K. A. Trzaska, and P. Rameshwar, “RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4408–4413, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. X. Lu, Q. Wang, G. Hu et al., “ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis,” Genes and Development, vol. 23, no. 16, pp. 1882–1894, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. P. K. Lim, S. A. Bliss, S. A. Patel et al., “Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells,” Cancer Research, vol. 71, no. 5, pp. 1550–1560, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. L. Moharita, M. Taborga, K. E. Corcoran, M. Bryan, P. S. Patel, and P. Rameshwar, “SDF-1α regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis,” Blood, vol. 108, no. 10, pp. 3245–3252, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. H. F. Dvorak, V. M. Weaver, T. D. Tlsty, and G. Bergers, “Tumor microenvironment and progression,” Journal of Surgical Oncology, vol. 103, no. 6, pp. 468–474, 2011. View at Publisher · View at Google Scholar · View at PubMed
  19. P. Micke and A. Östman, “Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 9, no. 6, pp. 1217–1233, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. J. Bissell and W. C. Hines, “Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression,” Nature Medicine, vol. 17, no. 3, pp. 320–329, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. F. Dai, L. Liu, G. Che et al., “The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer,” BMC Cancer, vol. 10, article 220, 2010. View at Publisher · View at Google Scholar · View at PubMed
  22. L. Rønnov-Jessen and M. J. Bissell, “Breast cancer by proxy: can the microenvironment be both the cause and consequence?” Trends in Molecular Medicine, vol. 15, no. 1, pp. 5–13, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. S. Liu, C. Ginestier, S. J. Ou et al., “Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks,” Cancer Research, vol. 71, no. 2, pp. 614–624, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. B. Dirat, L. Bochet, M. Dabek et al., “Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion,” Cancer Research, vol. 71, no. 7, pp. 2455–2465, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. C. Porta, E. Riboldi, and A. Sica, “Mechanisms linking pathogens-associated inflammation and cancer,” Cancer Letters, vol. 305, no. 2, pp. 250–262, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. N. Kobayashi, S. Miyoshi, T. Mikami et al., “Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization,” Cancer Research, vol. 70, no. 18, pp. 7073–7083, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. I. Espinosa, C. M. Jose, L. Catasus et al., “Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role,” The American Journal of Surgical Pathology, vol. 34, no. 11, pp. 1708–1714, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. Sica, C. Porta, E. Riboldi, and M. Locati, “Convergent pathways of macrophage polarization: the role of B cells,” European Journal of Immunology, vol. 40, no. 8, pp. 2131–2133, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. Chen, Y. Yao, C. Gong et al., “CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3,” Cancer Cell, vol. 19, no. 4, pp. 541–555, 2011. View at Publisher · View at Google Scholar · View at PubMed
  30. C. la Vecchia, S. H. Giordano, G. N. Hortobagyi, and B. Chabner, “Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle,” Oncologist, vol. 16, no. 6, pp. 726–729, 2011. View at Publisher · View at Google Scholar · View at PubMed
  31. M. Locke, V. Feisst, and P. R. Dunbar, “Concise review: human adipose-derived stem cells: separating promise from clinical need,” Stem Cells, vol. 29, no. 3, pp. 404–411, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. P. J. Mishra, P. J. Mishra, J. W. Glod, and D. Banerjee, “Mesenchymal stem cells: Flip side of the coin,” Cancer Research, vol. 69, no. 4, pp. 1255–1258, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. P. J. Mishra, P. J. Mishra, R. Humeniuk et al., “Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells,” Cancer Research, vol. 68, no. 11, pp. 4331–4339, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Y. Lin, J. Yang, A. D. Everett et al., “The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells,” Experimental Cell Research, vol. 314, no. 17, pp. 3107–3117, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. D. Liao, Y. Luo, D. Markowitz, R. Xiang, and R. A. Reisfeld, “Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model,” PLoS ONE, vol. 4, no. 11, Article ID e7965, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. S. A. Patel, J. R. Meyer, S. J. Greco, K. E. Corcoran, M. Bryan, and P. Rameshwar, “Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β,” Journal of Immunology, vol. 184, no. 10, pp. 5885–5894, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. B. L. Mundy-Bosse, L. M. Thornton, H.-C. Yang, B. L. Andersen, and W. E. Carson, “Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients,” Cellular Immunology, vol. 270, no. 1, pp. 80–87, 2011. View at Publisher · View at Google Scholar · View at PubMed
  38. C. E. Steding, S.-T. Wu, Y. Zhang, M.-H. Jeng, B. D. Elzey, and C. Kao, “The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis,” Immunology, vol. 133, no. 2, pp. 221–238, 2011. View at Publisher · View at Google Scholar · View at PubMed
  39. C. M. Diaz-Montero, M. L. Salem, M. I. Nishimura, E. Garrett-Mayer, D. J. Cole, and A. J. Montero, “Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 49–59, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. Chmielewski, C. Kopecky, A. A. Hombach, and H. Abken, “IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression,” Cancer Research, vol. 71, no. 17, pp. 5697–5706, 2011. View at Publisher · View at Google Scholar · View at PubMed
  41. D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nature Reviews Cancer, vol. 9, no. 2, pp. 108–122, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. A. Patel, M. A. Dave, R. G. Murthy, K. Y. Helmy, and P. Rameshwar, “Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection,” Oncology Reviews, vol. 5, no. 2, pp. 93–102, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. A. Patel, A. Ndabahaliye, P. K. Lim, R. Milton, and P. Rameshwar, “Challenges in the development of future treatments for breast cancer stem cells,” Breast Cancer, vol. 2, pp. 1–11, 2010. View at Google Scholar · View at Scopus
  44. I. Moen, A. M. Øyan, K. H. Kalland et al., “Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model,” PLoS ONE, vol. 4, no. 7, Article ID e6381, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. B. G. Hollier, K. Evans, and S. A. Mani, “The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies,” Journal of Mammary Gland Biology and Neoplasia, vol. 14, no. 1, pp. 29–43, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. P. Tang, X. Wang, L. Schiffhauer et al., “Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers,” Annals of Clinical and Laboratory Science, vol. 36, no. 1, pp. 16–22, 2006. View at Google Scholar · View at Scopus
  47. Y. Ge, N. Sneige, M. A. Eltorky et al., “Immunohistochemical characterization of subtypes of male breast carcinoma,” Breast Cancer Research, vol. 11, no. 3, article R28, 2009. View at Publisher · View at Google Scholar · View at PubMed
  48. S. Liu, G. Dontu, I. D. Mantle et al., “Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells,” Cancer Research, vol. 66, no. 12, pp. 6063–6071, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. Rameshwar, “Breast cancer cell dormancy in bone marrow: potential therapeutic targets within the marrow microenvironment,” Expert Review of Anticancer Therapy, vol. 10, no. 2, pp. 129–132, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. J. Kiel and S. J. Morrison, “Uncertainty in the niches that maintain haematopoietic stem cells,” Nature Reviews Immunology, vol. 8, no. 4, pp. 290–301, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. E. Davis, J. E. Zuckerman, C. H. J. Choi et al., “Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles,” Nature, vol. 464, no. 7291, pp. 1067–1070, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. Q. Zhang, S. Shi, Y. Liu et al., “Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis,” Journal of Immunology, vol. 183, no. 12, pp. 7787–7798, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus