Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2018, Article ID 4786819, 7 pages
https://doi.org/10.1155/2018/4786819
Review Article

The Evolution of Radiation Therapy in Metastatic Breast Cancer: From Local Therapy to Systemic Agent

1Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
2Department of Medicine, University of Chicago, Chicago, IL, USA

Correspondence should be addressed to Steven J. Chmura; ude.ogacihcu.cnodar@arumhcs

Received 25 October 2017; Accepted 12 April 2018; Published 16 May 2018

Academic Editor: Virginia F. Borges

Copyright © 2018 Jessica M. S. Jutzy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Deng, H. Liang, M. Xu et al., “STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors,” Immunity, vol. 41, no. 5, pp. 543–852, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. R. R. Weichselbaum, H. Liang, L. Deng, and Y.-X. Fu, “Radiotherapy and immunotherapy: A beneficial liaison?” Nature Reviews Clinical Oncology, vol. 14, no. 6, pp. 365–379, 2017. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Matsumura, B. Wang, N. Kawashima et al., “Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells,” The Journal of Immunology, vol. 181, no. 5, pp. 3099–3107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. W. S. Halsted, “I. The results of radical operations for the cure of carcinoma of the breast,” Annals of Surgery, vol. 46, no. 1, 1907. View at Google Scholar
  5. G. Keynes, “Carcinoma of the breast, the unorthodox view,” in Proceedings of the Cardiff Medical Society, vol. 40, 1954.
  6. B. Fisher, “Laboratory and clinical research in breast cancer—a personal adventure: the David A. Karnofsky Memorial Lecture,” Cancer Research, vol. 40, no. 11, pp. 3863–3874, 1980. View at Google Scholar · View at Scopus
  7. S. Hellman, “Karnofsky Memorial Lecture. Natural history of small breast cancers.,” Journal of clinical oncology : official journal of the American Society of Clinical Oncology, vol. 12, no. 10, pp. 2229–2234, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Hellman and R. R. J. Weichselbaum, “Oligometastases,” Journal of Clinical Oncology, vol. 13, no. 1, pp. 8–10, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. P. L. Dorn, A. Meriwether, M. LeMieux, R. Weichselbaum, S. Chmura, and Y. Hasan, “Patterns of Distant Failure and Progression in Breast Cancer: Implications for the Treatment of Oligometastatic Disease,” International Journal of Radiation Oncology Biology and Physics, vol. 81, no. 2, p. S643, 2011. View at Publisher · View at Google Scholar
  10. G. N. Hortobagyi, T. L. Smith, S. S. Legha et al., “Multivariate analysis of prognostic factors in metastatic breast cancer,” Journal of Clinical Oncology, vol. 1, no. 12, pp. 776–786, 1983. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. Greenberg, G. N. Hortobagyi, T. L. Smith, L. D. Ziegler, D. K. Frye, and A. U. Buzdar, “Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer,” Journal of Clinical Oncology, vol. 14, no. 8, pp. 2197–2205, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Fong, A. M. Cohen, J. G. Fortner et al., “Liver resection for colorectal metastases,” Journal of Clinical Oncology, vol. 15, no. 3, pp. 938–946, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Rusthoven, B. D. Kavanagh, and S. H. Burri, “Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1579–1584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. T. Milano, A. W. Katz, H. Zhang, and P. Okunieff, “Oligometastases treated with stereotactic body radiotherapy: long-term follow-up of prospective study,” International Journal of Radiation Oncology • Biology • Physics, vol. 83, no. 3, pp. 878–886, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. B. A. Pockaj, N. Wasif, A. C. Dueck et al., “Metastasectomy and Surgical Resection of the Primary Tumor in Patients With Stage IV Breast Cancer,” Annals of Surgical Oncology, vol. 17, no. 9, pp. 2419–2426, 2010. View at Publisher · View at Google Scholar
  16. M. T. Milano, H. Zhang, S. K. Metcalfe, A. G. Muhs, and P. Okunieff, “Oligometastatic breast cancer treated with curative-intent stereotactic body radiation therapy,” Breast Cancer Research and Treatment, vol. 115, no. 3, pp. 601–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Balogun and S. C. Formenti, “Combining radiotherapy and immunotherapy,” Cancer Treatment and Research, no. 9783319532332, pp. 1–20, 2017. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Demaria, N. Kawashima, A. M. Yang et al., “Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer,” Clinical Cancer Research, vol. 11, no. 2, part 1, pp. 728–734, 2005. View at Google Scholar · View at Scopus
  20. C. Robert, L. Thomas, I. Bondarenko et al., “Ipilimumab plus dacarbazine for previously untreated metastatic melanoma,” New England Journal of Medicine, vol. 364, no. 26, 2011. View at Google Scholar
  21. JL. Gulley, D. Spigel, K. Kelly et al., “Avelumab (MSB0010718C, an anti-PD-L1 antibody, in advanced NSCLC patients: A phage 1b, open-label expansion trial in patients progressing after platinum-based chemotherapy,” Journal of Clinical Oncology, vol. 33, no. 15, 2015. View at Google Scholar
  22. K. Kelly, J. R. Infante, M. H. Taylor et al., “Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials,” Cancer, vol. 124, no. 9, pp. 2010–2017, 2018. View at Publisher · View at Google Scholar
  23. S. L. Topalian, F. S. Hodi, and J. R. Brahmer, “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer,” The New England Journal of Medicine, vol. 366, no. 26, pp. 2443–2454, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S.-R. Woo, M. B. Fuertes, L. Corrales et al., “STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors,” Immunity, vol. 41, no. 5, pp. 830–842, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Corrales, L. H. Glickman, S. M. McWhirter et al., “Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity,” Cell Reports, vol. 11, no. 7, pp. 1018–1030, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Fuertes, A. K. Kacha, J. Kline et al., “Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells,” The Journal of Experimental Medicine, vol. 208, no. 10, pp. 2005–2016, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. C. Burnette, H. Liang, Y. Lee et al., “The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity,” Cancer Research, vol. 71, no. 7, pp. 2488–2496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Gupta, A. Sharma, L. von Boehmer, L. Surace, A. Knuth, and M. van den Broek, “Radiotherapy supports protective tumor-specific immunity,” OncoImmunology, vol. 1, no. 9, pp. 1610-1611, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Y. H. Lim, S. A. Gerber, S. P. Murphy, and E. M. Lord, “Type i interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells,” Cancer Immunology, Immunotherapy, vol. 63, no. 3, pp. 259–271, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Chakraborty, S. I. Abrams, K. Camphausen et al., “Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy,” The Journal of Immunology, vol. 170, no. 12, pp. 6338–6347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Vanpouille-Box, J. M. Diamond, K. A. Pilones et al., “TGFB is a master regulator of radiation therapy-induced anti-tumor immunity,” Cancer Research, vol. 75, no. 11, 2015. View at Google Scholar
  32. C. D. Mills, “M1 and M2 macrophages: oracles of health and disease,” Critical Reviews in Immunology, vol. 32, no. 6, pp. 463–488, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. C.-S. Tsai, F.-H. Chen, C.-C. Wang et al., “Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and Promote Tumor Growth,” International Journal of Radiation Oncology • Biology • Physics, vol. 68, no. 2, pp. 499–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C.-I. Chang, J. C. Liao, and L. Kuo, “Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity,” Cancer Research, vol. 61, no. 3, pp. 1100–1106, 2001. View at Google Scholar · View at Scopus
  35. A. R. Wolfe, N. J. Trenton, B. G. Debeb et al., “Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre-clinical models,” Oncotarget , vol. 7, no. 50, pp. 82482–82492, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. U. S. Gaipl, G. Multhoff, H. Scheithauer et al., “Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy,” Immunotherapy, vol. 6, no. 5, pp. 597–610, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Z. Dewan, A. E. Galloway, N. Kawashima et al., “Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody,” Clinical Cancer Research, vol. 15, no. 17, pp. 5379–5388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Deng, H. Liang, B. Burnette et al., “Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice,” The Journal of Clinical Investigation, vol. 124, no. 2, pp. 687–695, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Postow, M. K. Callahan, C. A. Barker et al., “Immunologic correlates of the abscopal effect in a patient with melanoma,” The New England Journal of Medicine, vol. 366, no. 10, pp. 925–931, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. E. B. Golden, S. Demaria, P. B. Schiff, A. Chachoua, and S. C. Formenti, “An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer,” Cancer Immunology Research, vol. 1, no. 6, pp. 365–372, 2013. View at Publisher · View at Google Scholar
  41. J. M. Lemons, J. J. Luke, T. G. Karrison et al., “Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors,” Journal of Clinical Oncology, 2018. View at Google Scholar
  42. K. Reynders, T. Illidge, S. Siva, J. Y. Chang, and D. De Ruysscher, “The abscopal effect of local radiotherapy: Using immunotherapy to make a rare event clinically relevant,” Cancer Treatment Reviews, vol. 41, no. 6, pp. 503–510, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Nanda, L. Q. M. Chow, E. C. Dees et al., “Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib keynote-012 study,” Journal of Clinical Oncology, vol. 34, no. 21, pp. 2460–2467, 2016. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Adams, P. Schmid, H. S. Rugo et al., “Phase 2 sutdy of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A,” Journal of Clinical Oncology, vol. 35, 2017. View at Google Scholar
  45. P. Schmid, C. Cruz, F. S. Braiteh et al., “Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analysis, (abstract),” in Proceedings of the American Association for Cancer Research, 108th Annual Meeting, 2017.
  46. L. A. Emens, F. S. Braiteh, P. Cassier et al., “Abstract 2859: Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC),” Cancer Research, vol. 75, no. 15 Supplement, pp. 2859–2859, 2015. View at Publisher · View at Google Scholar
  47. LY. Dirix, I. Takacs, G. Jerusalem et al., “Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study,” Breast Cancer Research and Treatment, vol. 167, no. 3, 2018. View at Google Scholar
  48. V. C. Twyman-Saint, A. J. Rech, A. Maity et al., “Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer,” Nature, vol. 520, no. 7547, pp. 373–377, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. F. S. Hodi, S. J. O’Day, and D. F. McDermott, “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 13, pp. 711–723, 2010. View at Publisher · View at Google Scholar
  50. H. L. McArthur, A. Diab, D. B. Page et al., “A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling,” Clinical Cancer Research, vol. 22, no. 23, pp. 5729–5737, 2016. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Martinet, C. M. Divino, Y. Zang et al., “T cell activation with systemic agonistic antibody versus local 4-1BB ligand gene delivery combined with interleukin-12 eradicate liver metastases of breast cancer,” Gene Therapy, vol. 9, no. 12, pp. 786–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Shi and D. W. Siemann, “Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment,” Anticancer Reseach, vol. 26, no. 5 A, pp. 3445–3453, 2006. View at Google Scholar · View at Scopus
  53. A. P. Benaduce, R. Brenneman, B. Schrand, A. Pollack, E. Gilboa, and A. Ishkanian, “4-1BB Aptamer-Based Immunomodulation Enhances the Therapeutic Index of Radiation Therapy in Murine Tumor Models,” International Journal of Radiation Oncology • Biology • Physics, vol. 96, no. 2, pp. 458–461, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. C. J. Workman and D. A. A. Vignali, “Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223),” The Journal of Immunology, vol. 174, no. 2, pp. 688–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Triebel, S. Jitsukawa, E. Baixeras et al., “LAG-3, a novel lymphocyte activation gene closely related to CD4,” The Journal of Experimental Medicine, vol. 171, no. 5, pp. 1393–1405, 1990. View at Publisher · View at Google Scholar · View at Scopus
  56. J. F. Grosso, C. C. Kelleher, T. J. Harris et al., “LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems,” The Journal of Clinical Investigation, vol. 117, no. 11, pp. 3383–3392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Brignone, M. Gutierrez, F. Mefti et al., “First-line chemoimmunotherapy in metastatic breast carcinoma: Combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity,” Journal of Translational Medicine, vol. 8, article no. 71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. C. H. Ries, M. A. Cannarile, S. Hoves et al., “Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy,” Cancer Cell, vol. 25, no. 6, pp. 846–859, 2014. View at Publisher · View at Google Scholar
  59. J. A. Hamilton and A. Achuthan, “Colony stimulating factors and myeloid cell biology in health and disease,” Trends in Immunology, vol. 34, no. 2, pp. 81–89, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. D. G. DeNardo, D. J. Brennan, E. Rexhepaj et al., “Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy,” Cancer Discovery, vol. 1, no. 1, pp. 54–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Xu, J. Escamilla, S. Mok et al., “CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer,” Cancer Research, vol. 73, no. 9, pp. 2782–2794, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. E. F. Stamell, J. D. Wolchok, S. Gnjatic, N. Y. Lee, and I. Brownell, “The abscopal effect associated with a systemic anti-melanoma immune response,” International Journal of Radiation Oncology • Biology • Physics, vol. 85, no. 2, pp. 293–295, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Z. Dewan, C. Vanpouille-Box, N. Kawashima et al., “Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer,” Clinical Cancer Research, vol. 18, no. 24, pp. 6668–6678, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Filatenkov, J. Baker, A. M. S. Mueller et al., “Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions,” Clinical Cancer Research, vol. 21, no. 16, pp. 3727–3739, 2015. View at Publisher · View at Google Scholar · View at Scopus
  65. H. L. McArthur, C. A. Barker, A. Gucalp et al., “A single-arm, phase II study assessing the efficacy of pembrolizumab (pembro) plus radiotherapy (RT) in metastatic triple negative breast cancer (mTNBC), (abstract),” Journal of Clinical Oncology, vol. 36, 2018. View at Google Scholar
  66. H. McArthur, K. Beal, D. Halpenny et al., “Abstract 4705: CTLA4 blockade with HER2-directed therapy (H) yields clinical benefit in women undergoing radiation therapy (RT) for HER2-positive (HER2+) breast cancer brain metastases (BCBM),” in Proceedings of the American Association for Cancer Research, 108th Annual Meeting, vol. 77, pp. 4705–4705. View at Publisher · View at Google Scholar
  67. S. C. Formenti, P. Lee, S. Adams et al., Focal irradiation and systemic transforming growth factor beta blockade in metastatic breast cancer, Clinical Cancer Research, 2018.