Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2015, Article ID 519024, 16 pages
http://dx.doi.org/10.1155/2015/519024
Research Article

Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness

1Faculty of Sciences, Electronics and Microelectronics Laboratory, Monastir University, 5019 Monastir, Tunisia
2Faculty of Computers and Information, Benha University, Benha 13511, Egypt
3Institute of Mines and Ales, Laboratory of Computer and Production Engineering, 30319 Alès, France
4Imaging Technology Center (CTIM), Las Palmas-Gran Canaria University, 35017 Las Palmas de Gran Canaria, Spain

Received 11 April 2014; Accepted 12 November 2014

Academic Editor: Karen Panetta

Copyright © 2015 Mariem Ben Abdallah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Williams, M. Airey, H. Baxter, J. Forrester, T. Kennedy-Martin, and A. Girach, “Epidemiology of diabetic retinopathy and macular oedema: a systematic review,” Eye, vol. 18, no. 10, pp. 963–983, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Gupta and P. Kumar, “Global diabetes landscape-type 2 diabetes mellitus in South Asia: epidemiology, risk factors, and control,” Insulin, vol. 3, no. 2, pp. 78–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Malek, M. Ben Abdallah, A. Mansour, and R. Tourki, “Automated optic disc detection in retinal images by applying region-based active aontour model in a variational level set formulation,” in Proceedings of the International Conference on Computer Vision in Remote Sensing (CVRS '12), pp. 39–44, Xiamen, China, December 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Malek and R. Tourki, “Blood vessels extraction and classification into arteries and veins in retinal images,” in Proceedings of the 10th International Multi-Conference on Systems, Signals & Devices (SSD '13), pp. 1–6, Hammamet, Tunisia, March 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Malek and R. Tourki, “Inertia-based vessel centerline extraction in retinal image,” in Proceedings of the International Conference on Control, Decision and Information Technologies (CoDIT '13), pp. 378–381, Hammamet, Tunisia, May 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Al-Rawi, M. Qutaishat, and M. Arrar, “An improved matched filter for blood vessel detection of digital retinal images,” Computers in Biology and Medicine, vol. 37, no. 2, pp. 262–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. Tyler, L. D. Hubbard, K. Boydston, and A. J. Pugliese, “Characteristics of digital fundus camera systems affecting tonal resolution in color retinal images,” The Journal of Ophthalmic Photography, vol. 31, no. 1, pp. 1–9, 2009. View at Google Scholar
  8. T. W. Hansen, J. Jeppesen, S. Rasmussen, H. Ibsen, and C. Torp-Pedersen, “Ambulatory blood pressure and mortality: a population-based study,” Hypertension, vol. 45, no. 4, pp. 499–504, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Teng, M. Lefley, and D. Claremont, “Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy,” Medical and Biological Engineering and Computing, vol. 40, no. 1, pp. 2–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ben Abdallah, J. Malek, R. Tourki, J. E. Monreal, and K. Krissian, “Automatic estimation of the noise model in fundus images,” in Proceedings of the 10th International Multi-Conference on Systems, Signals & Devices (SSD '13), pp. 1–5, Hammamet, Tunisia, March 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Patton, T. M. Aslam, T. MacGillivray et al., “Retinal image analysis: concepts, applications and potential,” in Progress in Retinal and Eye Research, vol. 25, pp. 99–127, 2006. View at Google Scholar
  12. T. Walter, J.-C. Klein, P. Massin, and A. Erginay, “A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina,” IEEE Transactions on Medical Imaging, vol. 21, no. 10, pp. 1236–1243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Transactions on Medical Imaging, vol. 8, no. 3, pp. 263–269, 1989. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Zhang, L. Zhang, L. Zhang, and F. Karray, “Retinal vessel extraction by matched filter with first-order derivative of Gaussian,” Computers in Biology and Medicine, vol. 40, pp. 438–445, 2010. View at Google Scholar
  15. J. Malek, A. T. Azar, and R. Tourki, “Impact of retinal vascular tortuosity on retinal circulation,” Neural Computing and Applications, 2014. View at Publisher · View at Google Scholar
  16. M. Sofka and C. V. Stewar, “Retinal vessel extraction using multiscale matched filters confidence and edge measures,” Tech. Rep., Department of Computer Science, Rensselaer Polytechnic Institute, 2005. View at Google Scholar
  17. Y. Sato, S. Nakajima, N. Shiraga et al., “Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images,” Medical Image Analysis, vol. 2, no. 2, pp. 143–168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Rangayyan, F. Oloumi, F. Oloumi, P. Eshghzadeh-Zanjani, and F. J. Ayres, “Detection of blood vessels in the retina using Gabor filters,” in Proceedings of the 20th Canadi an Conference on Electrical and Computer Engineering (CCECE '07), pp. 717–720, Vancouver, Canada, April 2007. View at Publisher · View at Google Scholar
  19. T. Pock, C. Janko, R. Beichel, and H. Bischof, “Multiscale medialness for robust segmentation of 3D tubular structures,” in Proceedings of the 10th Computer Vision with Workshop, The Austrian Science Fund (FWF) under the grants P17066-N04, February 2005.
  20. M. G. Cinsdikici and D. Aydin, “Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm,” Computer Methods and Programs in Biomedicine, vol. 96, no. 2, pp. 85–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Mendonça and A. Campilho, “Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE Transactions on Medical Imaging, vol. 25, no. 9, pp. 1200–1213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Zana and J.-C. Klein, “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation,” IEEE Transactions on Image Processing, vol. 10, no. 7, pp. 1010–1019, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Fraz, M. Y. Javed, and A. Basit, “Evaluation of retinal vessel segmentation methodologies based on combination of vessel centerlines and morphological processing,” in Proceedings of the 4th IEEE International Conference on Emerging Technologies (ICET '08), pp. 232–236, Rawalpindi, Pakistan, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Gang, O. Chutatape, and S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 2, pp. 168–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp. 501–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. P. C. Siddalingaswamy, “Automatic detection of multiple oriented blood vessels in retinal images,” Journal of Biomedical Science and Engineering, vol. 3, pp. 101–107, 2010. View at Publisher · View at Google Scholar
  27. S. Dua, N. Kandiraju, and H. W. Thompson, “Design and implementation of a unique blood-vessel detection algorithm towards early diagnosis of diabetic retinopathy,” in Proceedings of the IEEE International Conference on Information Technology: Coding and Computing, vol. 1, pp. 26–31, April 2005. View at Publisher · View at Google Scholar
  28. A. Frangi, Three-dimensional model -based analysis of vascular and cardiac images [Ph.D. thesis], Utrecht University, Utrecht, The Netherlands, 2001.
  29. C. Lorenz, I.-C. Carlsen, T. M. Buzug, C. Fassnacht, and J. Weese, “Multi scale line segmentation with automatic estimation of width, contrast and tangential direction in 2d and 3d medical images,” in Proceedings of the 1st Joint Conference Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery (CVRMed-MRCAS '97), pp. 233–242, Springer, London, UK, 1997.
  30. J. L. Federman, P. Gouras, H. Schubert et al., “Systemic diseases,” in Retina and Vitreous: Textbook of Ophthalmology, S. M. Podos and M. Yano, Eds., vol. 9, pp. 7–24, Mosby, St. Louis, Mo, USA, 1994. View at Google Scholar
  31. W. Huang, Automatic Detection and Quantification of Blood Vessels in the Vicinity of the Optic Disc in Digital Retinal Images, University of Waikato, 2006.
  32. http://reference.medscape.com/features/slideshow/retina.
  33. A. Hoover, “STARE database,” http://www.ces.clemson.edu/~ahoover/stare/.
  34. M. Niemeijer and B. van Ginneken, 2002, http://www.isi.uu.nl/Research/Databases/DRIVE/results.php.
  35. A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp. 203–210, 2000. View at Publisher · View at Google Scholar
  36. K. Krissian, “Flux-based anisotropic diffusion applied to enhancement of 3-D angiogram,” IEEE Transactions on Medical Imaging, vol. 21, no. 11, pp. 1440–1442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Blondel, Modelisation 3D et 3D + t des arteres coronaires a partir de sequences rotationnelles de projections rayons X [Ph.D. thesis], University of Nice Sophia Antipolis, Nice, France, 2004.
  38. M. Ben Abdallah, J. Malek, R. Tourki, and K. Krissian, “Restoration of retinal images using anisotropic diffusion like algorithms,” in Proceedings of the International Conference on Computer Vision in Remote Sensing (CVRS '12), pp. 116–121, Xiamen, China, December 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset, “Model-based detection of tubular structures in 3D images,” Computer Vision and Image Understanding, vol. 80, no. 2, pp. 130–171, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. G.-H. Cottet and L. Germain, “Image processing through reaction combined with nonlinear diffusion,” Mathematics of Computation, vol. 61, no. 204, pp. 659–673, 1993. View at Publisher · View at Google Scholar · View at MathSciNet
  41. J. Weickert, “Scale-space properties of nonlinear diffusion filtering with a diffusion tensor,” Tech. Rep. 110, University of Kaiserslautern, Kaiserslautern, Germany, 1994. View at Google Scholar
  42. J. Bigun, G. H. Granlund, and J. Wiklund, “Multidimensional orientation estimation with applications to texture analysis and optical flow,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 775–790, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Ben Abdallah, M. Jihene, K. Krissian, and R. Tourki, “An automated vessel segmentation of retinal images using multi-scale vesselness,” in Proceedings of the 8th International Multi-Conference on Systems, Signals & Devices, IEEE, 2011.
  44. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar Jr., H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Transactions on Medical Imaging, vol. 25, no. 9, pp. 1214–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, A. A. Bharath, and K. H. Parker, “Segmentation of blood vessels from red-free and fluorescein retinal images,” Medical Image Analysis, vol. 11, no. 1, pp. 47–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. D. Abramoff, “Comparative study of retinal vessel segmentation methods on a new publicly available database,” in Proceedings of the SPIE Medical Imaging, M. Fitzpatrick and M. Sonka, Eds., vol. 5370, pp. 648–656, 2004. View at Google Scholar
  47. X. Jiang and D. Mojon, “Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 1, pp. 131–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Lindeberg and D. Fagerström, “Scale-space with casual time direction,” in Proceedings of the 4th European Conference on Computer Vision (ECCV '96), pp. 229–240, Cambridge, UK, April 1996.
  49. W. Changhua, G. Agam, and P. Stanchev, “A general framework for vessel segmentation in retinal images,” in Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (CIRA '07), June 2007.
  50. X. Qian, M. P. Brennan, D. P. Dione et al., “A non-parametric vessel detection method for complex vascular structures,” Medical Image Analysis, vol. 13, no. 1, pp. 49–61, 2008. View at Publisher · View at Google Scholar
  51. L. Wang, A. Bhalerao, and R. Wilson, “Analysis of retinal vasculature using a multiresolution hermite model,” IEEE Transactions on Medical Imaging, vol. 26, no. 2, pp. 137–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. A. P. Witkin, “Scale-space filtering: a new apporach to multi scale description,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '84), pp. 150–153, March 1984.