Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2011, Article ID 710974, 8 pages
http://dx.doi.org/10.1155/2011/710974
Research Article

PAI-1 Expression Is Required for HDACi-Induced Proliferative Arrest in ras-Transformed Renal Epithelial Cells

Center for Cell Biology and Cancer Research, Albany Medical College (MC-165), Albany, NY 12208, USA

Received 26 March 2011; Accepted 25 June 2011

Academic Editor: J. Chloe Bulinski

Copyright © 2011 Stephen P. Higgins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Marmorstein and S. Y. Roth, “Histone acetyltransferases: function, structure, and catalysis,” Current Opinion in Genetics and Development, vol. 11, no. 2, pp. 155–161, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Garcia-Manero and J. P. Issa, “Histone deacetylase inhibitors: a review of their clinical status as antineoplastic agents,” Cancer Investigation, vol. 23, no. 7, pp. 635–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Y. Roth, J. M. Denu, and C. D. Allis, “Histone acetyltransferases,” Annual Review of Biochemistry, vol. 70, pp. 81–120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Thiagalingam, K. H. Cheng, H. J. Lee, N. Mineva, A. Thiagalingam, and J. F. Ponte, “Histone deacetylases: unique players in shaping the epigenetic histone code,” Annals of the New York Academy of Sciences, vol. 983, pp. 84–100, 2003. View at Google Scholar · View at Scopus
  5. W. S. Xu, R. B. Parmigiani, and P. A. Marks, “Histone deacetylase inhibitors: molecular mechanisms of action,” Oncogene, vol. 26, no. 37, pp. 5541–5552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Davie, “Inhibition of histone deacetylase activity by butyrate,” Journal of Nutrition, vol. 133, no. 7, pp. S2485–S2493, 2003. View at Google Scholar · View at Scopus
  7. J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Chambers, S. Banerjee, T. Chaplin et al., “Histone acetylation-mediated regulation of genes in leukaemic cells,” European Journal of Cancer, vol. 39, no. 8, pp. 1165–1175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Sasakawa, Y. Naoe, N. Sogo et al., “Marker genes to predict sensitivity to FK228, a histone deacetylase inhibitor,” Biochemical Pharmacology, vol. 69, no. 4, pp. 603–616, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ocker and R. Schneider-Stock, “Histone deacetylase inhibitors: signalling towards p21cip1/waf1,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 7-8, pp. 1367–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. van Lint, S. Emiliani, and E. Verdin, “The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation,” Gene Expression, vol. 5, no. 4-5, pp. 245–253, 1996. View at Google Scholar · View at Scopus
  12. K. B. Glaser, M. J. Staver, J. F. Waring, J. Stender, R. G. Ulrich, and S. K. Davidsen, “Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines,” Molecular Cancer Therapeutics, vol. 2, no. 2, pp. 151–163, 2003. View at Google Scholar · View at Scopus
  13. A. L. Gartel and S. K. Radhakrishnan, “Lost in transcription: p21 repression, mechanisms, and consequences,” Cancer Research, vol. 65, no. 10, pp. 3980–3985, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. P. Ryan and P. J. Higgins, “Sodium-n-butyrate induces secretion and substrate accumulation of p52 in Kirsten sarcoma virus-transformed rat kidney fibroblasts,” International Journal of Biochemistry, vol. 21, no. 1, pp. 31–37, 1989. View at Google Scholar · View at Scopus
  15. P. J. Higgins and M. P. Ryan, “P52(PAI-1) and actin expression in butyrate-induced flat revertants of v-ras-transformed rat kidney cells,” Biochemical Journal, vol. 279, no. 3, pp. 883–890, 1991. View at Google Scholar · View at Scopus
  16. P. J. Higgins, P. Chaudhari, and M. P. Ryan, “Cell-shape regulation and matrix protein p52 content in phenotypic variants of ras-transformed rat kidney fibroblasts. Functional analysis and biochemical comparison of p52 with proteins implicated in cell-shape determination,” Biochemical Journal, vol. 273, no. 3, pp. 651–658, 1991. View at Google Scholar · View at Scopus
  17. J. M. Mariadason, G. A. Corner, and L. H. Augenlicht, “Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer,” Cancer Research, vol. 60, no. 16, pp. 4561–4572, 2000. View at Google Scholar · View at Scopus
  18. T. Chiba, O. Yokosuka, M. Arai et al., “Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells,” Journal of Hepatology, vol. 41, no. 3, pp. 436–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Wakabayashi, H. Saito, F. Kaneko, N. Nakamoto, S. Tada, and T. Hibi, “Gene expression associated with the decrease in malignant phenotype of human liver cancer cells following stimulation with a histone deacetylase inhibitor,” International Journal of Oncology, vol. 26, no. 1, pp. 233–239, 2005. View at Google Scholar · View at Scopus
  20. Y. Tabuchi, I. Takasaki, T. Doi, Y. Ishii, H. Sakai, and T. Kondo, “Genetic networks responsive to sodium butyrate in colonic epithelial cells,” FEBS Letters, vol. 580, no. 13, pp. 3035–3041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Ocker and R. Schneider-Stock, “Histone deacetylase inhibitors: signalling towards p21cip1/waf1,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 7-8, pp. 1367–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. E. Wilkins-Port, Q. Ye, J. E. Mazurkiewicz, and P. J. Higgins, “TGF-β1 + EGF-initiated invasive potential in transformed human keratinocytes is coupled to a plasmin/mmp-10/mmp-1-dependent collagen remodeling axis: role for PAI-1,” Cancer Research, vol. 69, no. 9, pp. 4081–4091, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. M. Kortlever, P. J. Higgins, and R. Bernards, “Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence,” Nature Cell Biology, vol. 8, no. 8, pp. 878–884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. L. E. Klein, B. S. Freeze, A. B. Smith, and S. B. Horwitz, “The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence,” Cell Cycle, vol. 4, no. 3, pp. 501–507, 2005. View at Google Scholar · View at Scopus
  25. H. Ota, E. Tokunaga, K. Chang et al., “Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated ras-MAPK signaling in human cancer cells,” Oncogene, vol. 25, no. 2, pp. 176–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Schmitt, J. S. Fridman, M. Yang et al., “A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy,” Cell, vol. 109, no. 3, pp. 335–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Kortlever, J. H. Nijwening, and R. Bernards, “Transforming growth factor-β requires its target plasminogen activator inhibitor-1 for cytostatic activity,” Journal of Biological Chemistry, vol. 283, no. 36, pp. 24308–24313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. X. Mason, T. J. Jackson, and A. W. Lin, “Molecular signature of oncogenic ras-induced senescence,” Oncogene, vol. 23, no. 57, pp. 9238–9246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Serrano, A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe, “Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a,” Cell, vol. 88, no. 5, pp. 593–602, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. V. G. Gorgoulis and T. D. Halazonetis, “Oncogene-induced senescence: the bright and dark side of the response,” Current Opinion in Cell Biology, vol. 22, no. 6, pp. 816–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. V. L. Gabai, J. A. Yaglom, T. Waldman, and M. Y. Sherman, “Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells,” Molecular and Cellular Biology, vol. 29, no. 2, pp. 559–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. J. Higgins, M. P. Ryan, and D. M. Jelley, “p52PAI-1 gene expression in butyrate-induced flat revertants of v-ras-transformed rat kidney cells: mechanism of induction and involvement in the morphological response,” Biochemical Journal, vol. 321, no. 2, pp. 431–437, 1997. View at Google Scholar · View at Scopus
  33. M. B. Berkenpas, D. A. Lawrence, and D. Ginsburg, “Molecular evolution of plasminogen activator inhibitor-1 functional stability,” EMBO Journal, vol. 14, no. 13, pp. 2969–2977, 1995. View at Google Scholar · View at Scopus
  34. K. M. Providence, S. M. Kutz, L. Staiano-Coico, and P. J. Higgins, “PAI-1 gene expression is regionally induced in wounded epithelial cell monolayers and required for injury repair,” Journal of Cellular Physiology, vol. 182, no. 2, pp. 269–280, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. P. J. Higgins and M. P. Ryan, “Biochemical localization of the transformation-sensitive 52 kDa p52 protein to the substratum contact regions of cultured rat fibroblasts. Butyrate induction, characterization, and quantification of p52 in v-ras transformed cells,” Biochemical Journal, vol. 257, no. 1, pp. 173–182, 1989. View at Google Scholar · View at Scopus
  36. M. P. Ryan and P. J. Higgins, “Cytoarchitecture of Kirsten sarcoma virus-transformed rat kidney fibroblasts: butyrate-induced reorganization within the actin microfilament network,” Journal of Cellular Physiology, vol. 137, no. 1, pp. 25–34, 1988. View at Google Scholar · View at Scopus
  37. P. J. Higgins and T. J. Smith, “Pleotrophic action of interferon gamma in human orbital fibroblasts,” Biochimica et Biophysica Acta, vol. 1181, no. 1, pp. 23–30, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. P. J. Higgins, M. P. Ryan, R. Zehab, T. D. Gelehrter, and P. Chaudhari, “p52 Induction by cytochalasin D in rat kidney fibroblasts: homologies between p52 and plasminogen activator inhibitor type-1,” Journal of Cellular Physiology, vol. 143, no. 2, pp. 321–329, 1990. View at Google Scholar · View at Scopus
  39. P. J. Higgins, M. P. Ryan, and A. Ahmed, “Cell-shape-associated transcriptional activation of the p52(PAI-1)gene in rat kidney cells,” Biochemical Journal, vol. 288, no. 3, pp. 1017–1024, 1992. View at Google Scholar · View at Scopus
  40. P. Yaswen and J. Campisi, “Oncogene-induced senescence pathways weave an intricate tapestry,” Cell, vol. 128, no. 2, pp. 233–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Kilbey, A. Terry, E. R. Cameron, and J. C. Neil, “Oncogene-induced senescence: an essential role for Runx,” Cell Cycle, vol. 7, no. 15, pp. 2333–2340, 2008. View at Google Scholar · View at Scopus
  42. D. N. Shelton, E. Chang, P. S. Whittier, D. Choi, and W. D. Funk, “Microarray analysis of replicative senescence,” Current Biology, vol. 9, no. 17, pp. 939–945, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Untergasser, H. B. Koch, A. Menssen, and H. Hermeking, “Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer,” Cancer Research, vol. 62, no. 21, pp. 6255–6262, 2002. View at Google Scholar · View at Scopus
  44. A. L. Fridman and M. A. Tainsky, “Critical pathways in cellular senescence and immortalization revealed by gene expression profiling,” Oncogene, vol. 27, no. 46, pp. 5975–5987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Freytag, C. E. Wilkins-Port, C. E. Higgins et al., “PAI-1 regulates the invasive phenotype in human cutaneous squamous cell carcinoma,” Journal of Oncology, vol. 2009, Article ID 963209, 12 pages, 2009. View at Publisher · View at Google Scholar
  46. J. Freytag, C. E. Wilkins-Port, C. E. Higgins, S. P. Higgins, R. Samarakoon, and P. J. Higgins, “PAI-1 mediates the TGF-β1+EGF-induced "scatter" response in transformed human keratinocytes,” Journal of Investigative Dermatology, vol. 130, no. 9, pp. 2179–2190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. A. Nguyen, Y. Cao, J. R. Chen, C. M. Townsend, and T. C. Ko, “Dietary fiber enhances a tumor suppressor signaling pathway in the gut,” Annals of Surgery, vol. 243, no. 5, pp. 619–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Pajak, A. Orzechowski, and B. Gajkowska, “Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells,” Advances in Medical Sciences, vol. 52, pp. 83–88, 2007. View at Google Scholar · View at Scopus
  49. K. Vijayachandra, J. Lee, and A. B. Glick, “Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model,” Cancer Research, vol. 63, no. 13, pp. 3447–3452, 2003. View at Google Scholar · View at Scopus
  50. J. Munro, N. I. Barr, H. Ireland, V. Morrison, and E. K. Parkinson, “Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock,” Experimental Cell Research, vol. 295, no. 2, pp. 525–538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Bandyopadhyay, A. Mishra, and E. E. Medrano, “Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway,” Cancer Research, vol. 64, no. 21, pp. 7706–7710, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. C. D. Palani, J. F. Beck, and J. Sonnemann, “Histone deacetylase inhibitors enhance the anticancer activity of nutlin-3 and induce p53 hyperacetylation and downregulation of MDM2 and MDM4 gene expression,” Investigational New Drugs. In press. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Joseph, N. Wajapeyee, and K. Somasundaram, “Role of p53 status in chemosensitivity determination of cancer cells against histone deacetylase inhibitor sodium butyrate,” International Journal of Cancer, vol. 115, no. 1, pp. 11–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. E. I. Bukreeva, N. D. Aksenov, A. A. Bardin, V. A. Pospelov, and T. V. Pospelova, “Effect of histone deacetylase inhibitor sodium butyrate (NaB) on transformants E1A+cHa-ras expressing wild type p53 with suppressed transactivation function,” Tsitologiia, vol. 3, no. 5, pp. 697–705, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Matheu, P. Klatt, and M. Serrano, “Regulation of the INK4a/ARF locus by histone deacetylase inhibitors,” Journal of Biological Chemistry, vol. 280, no. 51, pp. 42433–42441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. F. Wang, N. S. Chen, Y. P. Chung, L. H. Chang, Y. H. Chiou, and C. Y. Chen, “Sodium butyrate induces apoptosis and cell cycle arrest in primary effusion lymphoma cells independently of oxidative stress and p21cip1/waf1 induction,” Molecular and Cellular Biochemistry, vol. 285, no. 1-2, pp. 51–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. R. M. Kortlever and R. Bernards, “Senescence, wound healing and cancer: the PAI-1 connection,” Cell Cycle, vol. 5, no. 23, pp. 2697–2703, 2006. View at Google Scholar · View at Scopus