Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012, Article ID 282041, 12 pages
http://dx.doi.org/10.1155/2012/282041
Review Article

Lipophagy: Connecting Autophagy and Lipid Metabolism

Rajat Singh1,2,3 and Ana Maria Cuervo1,3,4,5

1Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
2Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
3Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
4Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
5Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA

Received 5 December 2011; Accepted 17 January 2012

Academic Editor: Anne Simonsen

Copyright © 2012 Rajat Singh and Ana Maria Cuervo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Mizushima, A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, “In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1101–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Singh and A. M. Cuervo, “Autophagy in the cellular energetic balance,” Cell Metabolism, vol. 13, no. 5, pp. 495–504, 2011. View at Google Scholar
  3. R. L. Deter, P. Baudhuin, and C. de Duve, “Participation of lysosomes in cellular autophagy induced in rat liver by glucagon,” Journal of Cell Biology, vol. 35, no. 2, pp. C11–C16, 1967. View at Google Scholar · View at Scopus
  4. G. E. Mortimore and A. R. Pösö, “Lysosomal pathways in hepatic protein degradation: regulatory role of amino acids,” Federation Proceedings, vol. 43, no. 5, pp. 1289–1294, 1984. View at Google Scholar · View at Scopus
  5. G. E. Mortimore, A. R. Pösö, and B. R. Lardeux, “Mechanism and regulation of protein degradation in liver,” Diabetes/Metabolism Reviews, vol. 5, no. 1, pp. 49–70, 1985. View at Google Scholar · View at Scopus
  6. M. Thumm, “Isolation of autophagocytosis mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 349, no. 2, pp. 275–280, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Tsukada and Y. Ohsumi, “Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 333, no. 1-2, pp. 169–174, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. A. S. Greenberg, R. A. Coleman, F. B. Kraemer et al., “The role of lipid droplets in metabolic disease in rodents and humans,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2102–2110, 2011. View at Publisher · View at Google Scholar
  9. T. Fujimoto and R. G. Parton, “Not just fat: the structure and function of the lipid droplet,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 3, 2011. View at Google Scholar
  10. Y. Ohsaki, J. Cheng, M. Suzuki, Y. Shinohara, A. Fujita, and T. Fujimoto, “Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure,” Biochimica et Biophysica Acta, vol. 1791, no. 6, pp. 399–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Murphy, S. Martin, and R. G. Parton, “Lipid droplet-organelle interactions; sharing the fats,” Biochimica et Biophysica Acta, vol. 1791, no. 6, pp. 441–447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. B. Cole, D. D. Murphy, T. Grider, S. Rueter, D. Brasaemle, and R. L. Nussbaum, “Lipid droplet binding and oligomerization properties of the Parkinson's disease protein α-synuclein,” Journal of Biological Chemistry, vol. 277, no. 8, pp. 6344–6352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Ohsaki, J. Cheng, A. Fujita, T. Tokumoto, and T. Fujimoto, “Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B,” Molecular Biology of the Cell, vol. 17, no. 6, pp. 2674–2683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Ishii, T. Sudo, M. Kohno, M. Oguchi, and K. Onodera, “Lipid droplets containing DNA-histones released in the culture medium of transformed rat fibroblasts (HY1),” Cell Structure and Function, vol. 8, no. 1, pp. 35–42, 1983. View at Google Scholar
  15. G. Alvisi, V. Madan, and R. Bartenschlager, “Hepatitis C virus and host cell lipids: an intimate connection,” RNA Biology, vol. 8, no. 2, pp. 258–269, 2011. View at Publisher · View at Google Scholar
  16. F. A. Carvalho, F. A. Carneiro, I. C. Martins et al., “Dengue virus capsid protein binding to hepatic lipid droplets is K+-dependent and mediated by droplets surface proteins,” Journal of Virology, vol. 86, no. 4, pp. 2096–2108, 2011. View at Google Scholar
  17. A. Lass, R. Zimmermann, M. Oberer, and R. Zechner, “Lipolysis—a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores,” Progress in Lipid Research, vol. 50, no. 1, pp. 14–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Yang and D. J. Klionsky, “Mammalian autophagy: core molecular machinery and signaling regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 124–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Singh, S. Kaushik, Y. Wang et al., “Autophagy regulates lipid metabolism,” Nature, vol. 458, no. 7242, pp. 1131–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Dikic, T. Johansen, and V. Kirkin, “Selective autophagy in cancer development and therapy,” Cancer Research, vol. 70, no. 9, pp. 3431–3434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Kirkin, D. G. McEwan, I. Novak, and I. Dikic, “A role for ubiquitin in selective autophagy,” Molecular Cell, vol. 34, no. 3, pp. 259–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. K. Kim, D. W. Hailey, R. T. Mullen, and J. Lippincott-Schwartz, “Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 52, pp. 20567–20574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. T. Zheng, S. Shahnazari, A. Brech, T. Lamark, T. Johansen, and J. H. Brumell, “The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway,” Journal of Immunology, vol. 183, no. 9, pp. 5909–5916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. J. Youle and D. P. Narendra, “Mechanisms of mitophagy,” Nature Reviews Molecular Cell Biology, vol. 12, no. 1, pp. 9–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Johansen and T. Lamark, “Selective autophagy mediated by autophagic adapter proteins,” Autophagy, vol. 7, no. 3, pp. 279–296, 2011. View at Publisher · View at Google Scholar
  27. K. Tauchi-Sato, S. Ozeki, T. Houjou, R. Taguchi, and T. Fujimoto, “The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 44507–44512, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Wang, D. Gilham, and R. Lehner, “Proteomic and lipid characterization of apolipoprotein B-free luminal lipid droplets from mouse liver microsomes: implications for very low density lipoprotein assembly,” Journal of Biological Chemistry, vol. 282, no. 45, pp. 33218–33226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Robenek, M. J. Robenek, I. Buers et al., “Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26330–26338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Spandl, D. Lohmann, L. Kuerschner, C. Moessinger, and C. Thiele, “Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region,” Journal of Biological Chemistry, vol. 286, no. 7, pp. 5599–5606, 2011. View at Publisher · View at Google Scholar
  31. T. Fujimoto, Y. Ohsaki, J. Cheng, M. Suzuki, and Y. Shinohara, “Lipid droplets: a classic organelle with new outfits,” Histochemistry and Cell Biology, vol. 130, no. 2, pp. 263–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. E. L. Axe, S. A. Walker, M. Manifava et al., “Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum,” Journal of Cell Biology, vol. 182, no. 4, pp. 685–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. W. Hailey, A. S. Rambold, P. Satpute-Krishnan et al., “Mitochondria supply membranes for autophagosome biogenesis during starvation,” Cell, vol. 141, no. 4, pp. 656–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. V. M. Hubbard, R. Valdor, B. Patel, R. Singh, A. M. Cuervo, and F. Macian, “Macroautophagy regulates energy metabolism during effector T cell activation,” Journal of Immunology, vol. 185, no. 12, pp. 7349–7357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kaushik, J. A. Rodriguez-Navarro, E. Arias et al., “Autophagy in hypothalamic agrp neurons regulates food intake and energy balance,” Cell Metabolism, vol. 14, no. 2, pp. 173–183, 2011. View at Publisher · View at Google Scholar
  36. M. Martinez-Vicente, Z. Talloczy, E. Wong et al., “Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease,” Nature Neuroscience, vol. 13, no. 5, pp. 567–576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ouimet, V. Franklin, E. Mak, X. Liao, I. Tabas, and Y. L. Marcel, “Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase,” Cell Metabolism, vol. 13, no. 6, pp. 655–667, 2011. View at Publisher · View at Google Scholar
  38. D. Cota, K. Proulx, K. A. Blake Smith et al., “Hypothalamic mTOR signaling regulates food intake,” Science, vol. 312, no. 5775, pp. 927–930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. W. Xu, C. B. Kaelin, K. Takeda, S. Akira, M. W. Schwartz, and G. S. Barsh, “PI3K integrates the action of insulin and leptin on hypothalamic neurons,” Journal of Clinical Investigation, vol. 115, no. 4, pp. 951–958, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. B. F. Belgardt and J. C. Brüning, “CNS leptin and insulin action in the control of energy homeostasis,” Annals of the New York Academy of Sciences, vol. 1212, pp. 97–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. B. Andrews, Z. W. Liu, N. Walllingford et al., “UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals,” Nature, vol. 454, no. 7206, pp. 846–851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. T. K. T. Lam, G. J. Schwartz, and L. Rossetti, “Hypothalamic sensing of fatty acids,” Nature Neuroscience, vol. 8, no. 5, pp. 579–584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Kuma, M. Hatano, M. Matsui et al., “The role of autophagy during the early neonatal starvation period,” Nature, vol. 432, no. 7020, pp. 1032–1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. F. Egan, D. B. Shackelford, M. M. Mihaylova et al., “Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy,” Science, vol. 331, no. 6016, pp. 456–461, 2011. View at Publisher · View at Google Scholar
  45. T. Kitamura, Y. Feng, Y. I. Kitamura et al., “Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake,” Nature Medicine, vol. 12, no. 5, pp. 534–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. Q. Meng and D. Cai, “Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β(IKKβ)/NF-κB pathway,” Journal of Biological Chemistry, vol. 286, no. 37, pp. 32324–32332, 2011. View at Publisher · View at Google Scholar
  47. M. Chari, C. S. Yang, C. K.L. Lam et al., “Glucose transporter-1 in the hypothalamic glial cells mediates glucose sensing to regulate glucose production in vivo,” Diabetes, vol. 60, no. 7, pp. 1901–1906, 2011. View at Publisher · View at Google Scholar
  48. R. Singh, Y. Xiang, Y. Wang et al., “Autophagy regulates adipose mass and differentiation in mice,” Journal of Clinical Investigation, vol. 119, no. 11, pp. 3329–3339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Zhang, S. Goldman, R. Baerga, Y. Zhao, M. Komatsu, and S. Jin, “Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 19860–19865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Shibata, K. Yoshimura, N. Furuya et al., “The MAP1-LC3 conjugation system is involved in lipid droplet formation,” Biochemical and Biophysical Research Communications, vol. 382, no. 2, pp. 419–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Le Lay, N. Briand, C. M. Blouin et al., “The lipoatrophic caveolin-1 deficient mouse model reveals autophagy in mature adipocytes,” Autophagy, vol. 6, no. 6, pp. 754–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Cahová, H. Daňková, E. Páleníčková, Z. Papáčková, and L. Kazdová, “The autophagy-lysosomal pathway is involved in TAG degradation in the liver: the effect of high-sucrose and high-fat diet,” Folia Biologica, vol. 56, no. 4, pp. 173–182, 2010. View at Google Scholar
  53. K. Komiya, T. Uchida, T. Ueno et al., “Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway,” Biochemical and Biophysical Research Communications, vol. 401, no. 4, pp. 561–567, 2010. View at Publisher · View at Google Scholar
  54. M. Nowicki, H. Serke, J. Kosacka, K. Müller, and K. Spanel-Borowski, “Oxidized low-density lipoprotein (oxLDL) induces cell death in neuroblastoma and survival autophagy in schwannoma cells,” Experimental and Molecular Pathology, vol. 89, no. 3, pp. 276–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Pauloin, S. Chat, C. Péchoux et al., “Oleate and linoleate stimulate degradation of β-casein in prolactin-treated HC11 mouse mammary epithelial cells,” Cell and Tissue Research, vol. 340, no. 1, pp. 91–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Tang, Y. Chen, H. Jiang, and D. Nie, “Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death,” Cell Death and Differentiation, vol. 18, no. 4, pp. 602–618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Koga, S. Kaushik, and A. M. Cuervo, “Altered lipid content inhibits autophagic vesicular fusion,” The FASEB Journal, vol. 24, no. 8, pp. 3052–3065, 2010. View at Publisher · View at Google Scholar
  58. S. Mei, H.-M. Ni, S. Manley et al., “Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 339, no. 2, pp. 487–498, 2011. View at Publisher · View at Google Scholar
  59. W. Ding, M. Li, X. Chen et al., “Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice,” Gastroenterology, vol. 139, no. 5, pp. 1740–1752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. L. F. R. Thoen, E. L. M. Guimarães, L. Dollé et al., “A role for autophagy during hepatic stellate cell activation,” Journal of Hepatology, vol. 55, no. 6, pp. 1353–1360, 2011. View at Publisher · View at Google Scholar
  61. N. S. Heaton and G. Randall, “Dengue virus-induced autophagy regulates lipid metabolism,” Cell Host and Microbe, vol. 8, no. 5, pp. 422–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Kovsan, M. Blüher, T. Tarnovscki et al., “Altered autophagy in human adipose tissues in obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 2, pp. E268–E277, 2011. View at Publisher · View at Google Scholar
  63. A. Öst, K. Svensson, I. Ruishalme et al., “Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes,” Molecular Medicine, vol. 16, no. 7-8, pp. 235–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Zhaorigetu, Z. Yang, I. Toma, T. A. McCaffrey, and C.-A. Hu, “Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks beclin 1-dependent autophagy in atherosclerotic cells,” Journal of Biological Chemistry, vol. 286, no. 31, pp. 27389–27398, 2011. View at Publisher · View at Google Scholar
  65. A. M. Cuervo, “Autophagy and aging: keeping that old broom working,” Trends in Genetics, vol. 24, no. 12, pp. 604–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Donati, A. Ventruti, G. Cavallini et al., “In vivo effect of an antilipolytic drug (3,5′-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver,” Biochemical and Biophysical Research Communications, vol. 366, no. 3, pp. 786–792, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Straniero, G. Cavallini, A. Donati et al., “Stimulation of autophagy by antilipolytic drugs may rescue rodents from age-associated hypercholesterolemia,” Rejuvenation Research, vol. 12, no. 2, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. L. R. Lapierre, S. Gelino, A. Meléndez, and M. Hansen, “Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans,” Current Biology, vol. 21, no. 18, pp. 1507–1514, 2011. View at Publisher · View at Google Scholar
  69. B. Benelam, “Satiety and the anorexia of ageing,” British Journal of Community Nursing, vol. 14, no. 8, pp. 332–335, 2009. View at Google Scholar · View at Scopus